Изобретение относится к ракетной технике, а именно к устройствам для приготовления смесевого ракетного твердого топлива (СРТТ), используемым в технологии свободного литья в корпус заряда, выполняющим одновременно функции смесителя гравитационного типа и передвижного контейнера.
В уровне техники имеется упоминание о существовании гравитационного смесителя, принятого за прототип, с такой функциональностью (Фиошина М.А., Русин Д.Л «Основы химии и технологии порохов и твердых ракетных топлив», Учебное пособие РХТУ им. Д.И. Менделеева - М, 2001, с. 154), включающего корпус, раму, на которой смонтирован корпус и оборудование, обеспечивающее функционирование смесителя, транспортировочную тележку.
Но при этом уточняется тип смесителя - С-5, который создан на основе смесителя периодического действия типа «пьяная бочка» (распространенное название смесителя гравитационного типа), но имеет иную схему загрузки смешиваемых компонентов - через полые полувалы (Кожух М.С., Фальковский М.Г. «Нестандартное оборудование заводов по производству твердых ракетных топлив и порохов», Учебное пособие РХТУ им. Д.И. Менделеева - М, 2000, с. 95, 96).
Известный смеситель имеет сложную схему загрузки компонентов, его конструкция не предусматривает возможности определения массы смесителя на стадиях загрузки, перемешивания компонентов и выгрузки готовой топливной смеси без использования стационарных весоизмерительных устройств, количество которых соответствует территориально-технологическому разрыву фаз, осуществляемых в отдельных зданиях, что снижает технологичность производственного процесса в целом и увеличивает затраты на обслуживание оборудования.
Кроме того, конструкция по прототипу не обеспечивает требуемой точности взвешивания в процессе слива топливной смеси в корпус заряда из-за необходимости взвешивания смесителя вместе с транспортировочной тележкой (для крупногабаритных смесителей вместе с железнодорожной платформой, масса которой соизмерима с массой загруженного смесителя).
При одинаковом классе используемого весоизмерительного устройства погрешность взвешивания загруженного компонентами смесителя вместе с транспортировочной тележкой значительно выше, чем погрешность взвешивания загруженного смесителя без тележки (платформы), что снижает достоверность проводимых измерений и, соответственно, не позволяет более точно оценить скорость истечения топливной смеси и момент окончания слива, требуя увеличенного запаса топливной смеси в смесителе для гарантированного заполнения корпуса заряда.
Задачей заявляемого технического решения является создание конструкции передвижного смесителя компонентов смесевого ракетного твердого топлива гравитационного типа, обеспечивающего при формовании зарядов СРТТ методом свободного литья значительное уменьшение потерь подлежащей утилизации топливной смеси путем минимизации количества ее необходимого остатка в смесителе для гарантированного заполнения корпуса заряда за счет снижения погрешности весоизмерительных операций.
Кроме того, заявляемая конструкция смесителя экономически более привлекательна в части уменьшения количества весоизмерительных устройств, используемых в технологическом процессе, так как позволяет снизить затраты на оснащение и обслуживание при эксплуатации.
Поставленная задача решается предлагаемым передвижным смесителем компонентов СРТТ гравитационного типа, включающим корпус, раму, на которой смонтирован корпус и оборудование, обеспечивающее функционирование смесителя, транспортировочную тележку. Особенность заключается в том, что рама снабжена кронштейнами, на горизонтальной площадке каждого из которых закреплен гидроцилиндр для подъема-опускания рамы, направляющие для размещения вкладыша в транспортном положении, с обратной стороны горизонтальной площадки каждого кронштейна закреплены направляющие для размещения вкладыша в рабочем положении, а транспортировочная тележка снабжена кронштейнами, на горизонтальной площадке каждого из которых смонтировано весоизмерительное устройство в виде тензометрического датчика, оснащенного элементом передачи веса смесителя на датчик, и опорный элемент, выполненный с возможностью контактирования с гидроцилиндром при подъеме рамы перед взвешиванием смесителя.
Проведенный анализ уровня техники показывает, что заявляемый смеситель типа «пьяная бочка» с обычной для этой конструкции загрузкой компонентов через люки отличается от прототипа оптимизированным позиционированием весоизмерительных устройств по отношению к смесительному оборудованию путем создания условий, позволяющих им перемещаться совместно со смесительным оборудованием (в прототипе смеситель неоднократно передислоцируют к месту расположения весоизмерительного устройства на каждой фазе технологического процесса), что и позволило получить технический результат, который невозможно достичь известным из уровня техники техническим решением.
Конструкция предлагаемого передвижного смесителя иллюстрируется графическими изображениями.
На фиг. 1 представлен продольный разрез смесителя.
На фиг. 2 представлен узел А на фиг. 1 в аксонометрической проекции.
На фиг. 3 представлен вид сверху смесителя.
Передвижной смеситель компонентов СРТТ гравитационного типа содержит корпус 1, раму 2, на которой смонтирован корпус 1 и оборудование, обеспечивающее функционирование смесителя, транспортировочную тележку 3. Внешние вертикальные поверхности рамы 2 снабжены кронштейнами 4. На горизонтальной площадке каждого из кронштейнов 4 закреплен гидроцилиндр 5 для подъема-опускания рамы 2, направляющие 6 для размещения вкладыша 7, например, двутаврового профиля, в транспортном положении. С обратной стороны горизонтальной площадки каждого кронштейна 4 закреплены направляющие 8 для размещения вкладыша 7, например, двутаврового профиля, в рабочем положении. Транспортировочная тележка 3 снабжена кронштейнами 9. На горизонтальной площадке каждого из кронштейнов 9 смонтировано весоизмерительное устройство в виде тензометрического датчика 10 (например, датчик тензорезисторный весоизмерительный «балочного типа» модели 4184, изготовитель - ООО «СИБТЕНЗОПРИБОР», г. Кемерово), оснащенного элементом 11 передачи веса смесителя на датчик, опорный элемент 12, контактирующий с гидроцилиндром 5 при подъеме рамы 2 перед взвешиванием смесителя.
Форма опорного элемента 12 может быть любой, желательно оптимизированной для снижения материалоемкости, например, в продольном сечении имеющая вид гантели.
Для корректного определения веса необходимо смонтировать на раме 2 не менее трех весоизмерительных устройств. Оптимальной для рассматриваемой конструкции смесителя является установка четырех весоизмерительных устройств. При этом все гидроцилиндры 5 параллельно подключены к общей гидросистеме.
Заявляемая конструкция работает следующим образом.
По прибытия смесителя на технологическую позицию, на которой предусмотрен контроль веса загружаемых компонентов или приготовленной их смеси, к гидросистеме смесителя подключают рукава подачи гидравлической жидкости от гидросистемы технологического помещения. Затем включают маслостанцию и подают команду на подъем рамы 2, при этом штоки гидроцилиндров 5 выдвигаются, упираются в опорные элементы 12 и приподнимают раму 2 смесителя над транспортировочной тележкой 3 на высоту, достаточную для переустановки по направляющим 6, а затем по направляющим 8 вкладышей 7 из транспортного в рабочее положение. После переустановки вкладышей 7 подают команду на опускание рамы 2 смесителя. Штоки гидроцилиндров 5 втягиваются и рама 2 смесителя опускается до соприкосновения вкладышей 7 с элементами 11 передачи веса смесителя, которыми оснащены тензометрические датчики 10.
По завершении взвешивания выполняют снятие рамы 2 смесителя с весоизмерительных устройств в порядке, обратном порядку установки рамы 2 на них.
Пример конкретного выполнения.
Загрузка корпуса 1 смесителя типа «пьяная бочка» для изготовления крупногабаритных зарядов СРТТ составляет 1700 кг. Вес смесителя с полной загрузкой корпуса 1 топливной смесью и рамой 2 составляет 12300 кг. Вес транспортировочной тележки - 13000 кг. Погрешность датчиков 10 весоизмерительных устройств составляет 0,1% от максимального значения измеряемой величины. Для смесителя без тележки погрешность измерения веса будет 12,3 кг, а для смесителя, взвешиваемого вместе с тележкой, погрешность измерения веса составит 25,3 кг.
Таким образом, на момент окончания выгрузки, зафиксированной весоизмерительными устройствами, в корпусе смесителя может остаться не более 12,3 кг топливной смеси. При изготовлении крупногабаритного заряда СРТТ с использованием 10 выгрузок смесителя экономия топливной смеси может достигать 130 кг.
Конструкция предлагаемого смесителя подтвердила свою работоспособность на практике.
название | год | авторы | номер документа |
---|---|---|---|
Способ изготовления зарядов смесевого ракетного твердого топлива | 2018 |
|
RU2683081C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2016 |
|
RU2621800C1 |
СМЕСИТЕЛЬ КОМПОНЕНТОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2016 |
|
RU2616913C1 |
Самозагружающаяся смесительно-зарядная машина для заряжания скважин в процессе изготовления взрывчатых веществ | 2019 |
|
RU2752067C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2016 |
|
RU2616922C1 |
СПОСОБ ПРОМЫШЛЕННОГО ПРОИЗВОДСТВА ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2001 |
|
RU2194687C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДОВ ИЗ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА | 1999 |
|
RU2167135C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2017 |
|
RU2660101C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗАРЯДОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА С ПРОГНОЗИРУЕМЫМИ ХАРАКТЕРИСТИКАМИ | 2001 |
|
RU2203871C1 |
УСТРОЙСТВО ГРУППОВОГО ФОРМОВАНИЯ ЗАРЯДОВ РАКЕТНЫХ ДВИГАТЕЛЕЙ ИЗ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА | 2005 |
|
RU2284309C1 |
Изобретение относится к ракетной технике, а именно к устройствам для приготовления смесевого ракетного твердого топлива (СРТТ), используемым в технологии свободного литья в корпус заряда, выполняющим одновременно функции смесителя гравитационного типа и передвижного контейнера. Передвижной смеситель гравитационного типа включает корпус, раму, на которой смонтирован корпус и оборудование, обеспечивающее функционирование смесителя, транспортировочную тележку. Рама снабжена кронштейнами, на горизонтальной площадке каждого из которых закреплен гидроцилиндр для подъема-опускания рамы, направляющие для размещения вкладыша в транспортном положении, с обратной стороны горизонтальной площадки каждого кронштейна закреплены направляющие для размещения вкладыша в рабочем положении. Транспортировочная тележка снабжена кронштейнами, на горизонтальной площадке каждого из которых смонтировано весоизмерительное устройство в виде тензометрического датчика, оснащенного элементом передачи веса смесителя на датчик, и опорный элемент, выполненный с возможностью контактирования с гидроцилиндром при подъеме рамы перед взвешиванием смесителя. Смеситель обеспечивает значительное уменьшение потерь подлежащей утилизации топливной массы путем минимизации количества ее необходимого остатка в смесителе для гарантированного заполнения корпуса заряда за счет снижения погрешности весоизмерительных операций. 3 ил., 1 пр.
Передвижной смеситель компонентов смесевого ракетного твердого топлива гравитационного типа, включающий корпус, раму, на которой смонтирован корпус и оборудование, обеспечивающее функционирование смесителя, транспортировочную тележку, отличающийся тем, что рама снабжена кронштейнами, на горизонтальной площадке каждого из которых закреплен гидроцилиндр для подъема-опускания рамы, направляющие для размещения вкладыша в транспортном положении, с обратной стороны горизонтальной площадки каждого кронштейна закреплены направляющие для размещения вкладыша в рабочем положении, а транспортировочная тележка снабжена кронштейнами, на горизонтальной площадке каждого из которых смонтировано весоизмерительное устройство в виде тензометрического датчика, оснащенного элементом передачи веса смесителя на датчик, и опорный элемент, выполненный с возможностью контактирования с гидроцилиндром при подъеме рамы перед взвешиванием смесителя.
СМЕСИТЕЛЬ КОМПОНЕНТОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2016 |
|
RU2616913C1 |
Усредительная машина для сыпучих материалов | 1972 |
|
SU564001A1 |
Универсальная машина для обработки пищевых продуктов | 1986 |
|
SU1607682A3 |
KR 1653615 B1, 02.09.2016 | |||
CN 103846038 A, 11.06.2014. |
Авторы
Даты
2018-12-05—Публикация
2018-01-09—Подача