Настоящее изобретение относится к области сварочного производства, в частности к способу сварки трением с перемешиванием и может быть использовано при сварке длинномерных алюминиевых заготовок в виде катаных или прессованных полуфабрикатов переменной толщины.
Известно, что сварка трением с перемешиванием широко используется для получения сварных деталей, узлов и конструкций из металлических материалов. Основными преимуществами этого способа сварки по сравнению с традиционными способами сварки плавлением являются:
во-первых, возможность получения высокопрочных сварных соединений практически равных по прочности основному металлу,
во-вторых, отсутствие в сварных конструкциях остаточных деформаций и поводок, которые неизбежно возникают при сварке плавлением.
Одним из важных технологических требований к процессу сварки трением с перемешиванием является обеспечение определенного расстояния (зазора) между торцом наконечника сварочного инструмента и подложкой, на которой закрепляется свариваемая деталь. Экспериментально установлено, что для получения качественного сварного шва, величина зазора в процессе сварки должна составлять от 0,05 до 0,3 мм.
При увеличении расстояния между торцом наконечника вращающегося сварочного инструмента и подложкой на величину более 0,3 мм, в корне шва возникают дефекты в виде трещин или несплавлений, приводящие к снижению механической прочности и пластичности сварных соединений, выполненных сваркой трением с перемешиванием.
При снижении указанного расстояния до значений меньше 0,05 мм высока вероятность локального перегрева и разупрочнения металла шва, кроме того, при касании наконечником сварочного инструмента технологической подложки происходит ее частичное разрушение с внедрением в корень шва частичек подложки.
Известен способ сварки трением с перемешиванием алюминиевых сплавов [RU 2357843], применяющийся для изготовления сварных конструкций и полуфабрикатов из алюминиевых сплавов судостроительной, авиационной, машиностроительной и других областях промышленности. В указанном патенте предлагается использовать сварочный инструмент с зафиксированными в процессе сварки уступом и наконечником, приведен пример применения способа при сварке стыковых листовых соединений. В этом случае отклонение геометрических размеров (допусков) по толщине свариваемых заготовок не должно превышать указанное максимально допустимое расстояние между торцом наконечника и подложкой, составляющее 0,3 мм. Указанная величина соответствует отклонению по толщине тонкостенных листовых полуфабрикатов, что позволяет успешно применять для их сварки способ сварки по [RU 2357843].
Однако, при сварке этим способом заготовок из прессованных полуфабрикатов возникают сложности, обусловленные тем, что допуски по толщине прессованных полуфабрикатов, как правило, превышают 0,3 мм, и, в большинстве случаев, составляют 0,3-0,6 мм.
Поэтому, при сварке заготовок из прессованных полуфабрикатов способом [RU 2357843] с использованием сварочного инструмента с зафиксированным уступом и наконечником, невозможно получать качественные бездефектные сварные соединения, с гарантированным проваром по всей толщине. Это является существенным недостатком указанного способа.
Частично исключить непровары в корне шва, возникающие при сварке заготовок с большими отклонениями по толщине, можно, применяя сварочный инструмент с выдвигающимся относительно уступа наконечником. Этот способ сварки указан в патентах US 5893507 (Appl. No. 08/904,505), US 2007/0228104 A1 (Appl. No. 11/395,723),
В приведенных изобретениях описывается способ сварки и оборудование, обеспечивающее:
измерение усилия на наконечнике сварочного инструмента,
регулирование рабочей длины наконечника,
определение координаты наконечника относительно поверхности уступа, поверхности свариваемых кромок или подложки.
Известные способы (по патентам US 5893507 US 2007/0228104) позволяют в процессе сварки управлять погружением наконечника в металл для обеспечения требуемой глубины провара свариваемых деталей.
Одновременно, в качестве условия, необходимого для обеспечения полного провара корня шва, задается расстояние между торцом наконечника и подложкой, которое остается постоянным вне зависимости от толщины свариваемой заготовки путем увеличения рабочей длины наконечника в процессе сварки трением с перемешиванием. Требуемая рабочая длина наконечника устанавливается в зависимости от суммарного усилия, действующего на сварочный инструмент.
В качестве прототипа выбран патент US 5718366, при котором наконечник или уступ сварочного инструмента упирается в корпус сварочного инструмента через упругие элементы (пружины). При этом в процессе сварки контролируется только суммарное усилие, действующее на сварочный инструмент, а усилия, действующие на уступ или на наконечник, определяются жесткостью пружин, перераспределяющих усилие с уступа на наконечник.
Приведенные выше изобретения (патенты US 5893507 US 2007/0228104, US 5718366) могут быть эффективно использованы для поддержания положения уступа сварочного инструмента относительно поверхности свариваемых заготовок и коррекции глубины погружения наконечника сварочного инструмента при сварке заготовок переменной толщины. Однако, их существенным недостатком является отсутствие регулирования тепловложения, вносимого в свариваемые кромки сварочным инструментом.
Проведенные исследования [Е.А. Алифиренко, В.И. Павлова, Е.П. Осокин, «Сварка трением с перемешиванием тонкостенных соединений из морского алюминиевого сплава 1561», Мир сварки, 2010 г., №15, с. 30-34] показали, что при заданной скорости сварки и фиксированном положении уступа относительно поверхности свариваемых заготовок, количество тепла, вносимое вращающимся сварочным инструментом в металл, определяется конструктивно-технологическими параметрами сварки - скоростью сварки, частотой вращения сварочного инструмента, диаметром уступа и наконечника. Часть тепла расходуется на разогрев и пластификацию перемещаемого в процессе сварки металла, а остальное тепло отводится в корпус сварочного инструмента, в прилегающие кромки и в подложку.
Таким образом, при сварке заготовок переменной толщины величина теплоотвода не является постоянной и зависит от толщины прилегающих кромок. Увеличение их толщины приводит к ускорению теплоотвода и снижению температуры металла в корневой зоне, что негативно сказывается на формировании соединения: повышается вероятность появления трещин, несплавлений, дефектов типа «kissing bonds».
Экспериментально показано, что при фиксированных параметрах процесса сварки трением с перемешиванием, увеличение толщины свариваемых кромок Al-Mg сплава от 2,0 до 3,0 мм приводит к снижению максимальных температур в зоне сварки ~ на 70°С (с 480 до 410°С), уменьшению эффективной зоны пластического течения металла и образованию дефектов в виде трещин и несплавлений (фигура 1) даже при соответствующей коррекции длины наконечника сварочного инструмента.
И наоборот, уменьшение толщины свариваемых заготовок при неизменных параметрах сварки приводит к избыточному тепловложению и увеличению сварочных деформаций, а также негативно сказывается на формировании сварного соединения: в перегретом металле возникают структурные неоднородности, приводящие к разупрочнению металла (фигура 2).
Таким образом, недостатком известных способов сварки является отсутствие механизма корректировки тепловложения при изменении толщины свариваемых заготовок.
Техническим результатом предлагаемого изобретения является способ сварки трением с перемешиванием алюминиевых полуфабрикатов, допускающий изменение толщины свариваемых заготовок в пределах 30%, и обеспечивающий гарантированный полный провар корня шва, стабильное формирование бездефектного сварного соединения с минимальными остаточными деформациями свариваемых алюминиевых заготовок.
Технический результат достигается тем, что способ сварки трением с перемешиванием алюминиевых заготовок переменной толщины, включает приложение осевого усилия Р, действующего на корпус сварочного инструмента, вращающегося с частотой ω, который содержит рабочий наконечник и уступ, один из которых установлен с упором в корпус сварочного инструмента через упругие элементы, а другой жестко связан с корпусом сварочного инструмента, при этом проводят измерения температуры поверхности сварного шва Т в процессе сварки на удалении позади сварочного инструмента, составляющем от 10 до 100 мм„ осуществляют корректировку тепловложения за счет изменения осевого усилия Р и частоты вращения ω сварочного инструмента при изменении температуры Т более, чем на 2°С от значения Тнач на начальном участке сварного шва по следующим формулам:
Р=Р0-К1(Т-Тнач)
ω=ω0-К2(Т-Тнач), где
Р0 и ω0 - осевое усилие и частота вращения инструмента, соответственно, на предыдущем шаге корректировки,
Тнач - температура на начальном участке сварного шва,
а коэффициенты К1 и К2, соответственно, вычисляют с учетом начальных параметров сварки по следующим формулам:
при 10<1<100 [мм], 1<5<10 [мм], δ - толщина свариваемых кромок.
На схеме (фигура 3) представлены оба варианта крепления сварочного инструмента и показано расположение термографа (5), фиксирующего температуру поверхности сварного шва.
Варианты крепления сварочного инструмента:
ВАРИАНТ А - рабочий наконечник 2 установлен с упором в корпус 1 через упругие элементы 4, а уступ 3 жестко связан с корпусом 1;
ВАРИАНТ Б - уступ 3 установлен с упором в корпус 1 через упругие элементы 4, а рабочий наконечник 2 жестко связан с корпусом сварочного инструмента 1.
Пример реализации изобретения
Выполняли сварку трением с перемешиванием алюминиевых заготовок длиной L (5, фигура 4), равной 300 мм, и переменной толщиной δ (6, фигура 4), равной 3,0 мм, 2,2 мм и 3,0 мм на участках 7, 8, 9 (фигура 4) соответственно. Для сварки использовали сварочный инструмент по варианту Б, в котором наконечник 2 жестко связан с корпусом 1 сварочного инструмента, а уступ 3 установлен с упором в корпус 1 через упругие элементы 4 (фигура 4).
В процессе сварки измеряли температуру сварного шва в зоне, расположенной на расстоянии (10, фигура 4), равном 20 мм позади сварочного инструмента с помощью термографа 11 (фигура 4) с разрешающей способностью 0,05°С.
Начальные параметры сварки составляли ω=500 об/мин, Р=1800 кг.
После прохождения начального участка 12 (фигура 4), равного 30 мм от места внедрения сварочного инструмента фиксировали значение температуры на начальном участке Тнач=64,2°С.
Для приведенных параметров сварки определили значения коэффициентов К1 и К2:
В процессе сварки проводили контроль значений температуры Т с частотой 1 измерение в секунду. При превышении отклонения Т от Тнач на величину большую чем 2°С, проводили расчет по формулам (1) и (2) и осуществляли соответствующую корректировку осевого усилия Р и частоты вращения ω
где Р0 и ω0 - значения осевого усилия и частоты вращения сварочного инструмента на предыдущем шаге корректировки.
Диаграмма изменения параметров процесса сварки представлена на фигуре 5.
Использование сварочного инструмента с уступом, установленным с упором в корпус через упругие элементы, контроль температуры металла в процессе сварки, корректировка тепловложения путем изменения осевого усилия и частоты вращения сварочного инструмента, регулирование заглубления наконечника сварочного инструмента обеспечили качественное формирование сварного соединения на протяжении всей длины свариваемой заготовки с переменной толщиной свариваемых кромок в пределах от 2,2 до 3,0 мм.
Макроструктура поперечного сечения сварного соединения на разных участках указана на фигуре 6.
название | год | авторы | номер документа |
---|---|---|---|
Способ сварки алюминиевых сплавов трением с перемешиванием | 2023 |
|
RU2815342C1 |
Способ сварки алюминиевых сплавов трением с перемешиванием | 2023 |
|
RU2814426C1 |
ИНСТРУМЕНТ ДЛЯ СВАРКИ ТРЕНИЕМ С ПЕРЕМЕШИВАНИЕМ АЛЮМИНИЕВЫХ СПЛАВОВ И СПОСОБ СВАРКИ | 2007 |
|
RU2357843C2 |
СПОСОБ СВАРКИ ТРЕНИЕМ С ПЕРЕМЕШИВАНИЕМ СТЫКОВЫХ СОЕДИНЕНИЙ ВЫСОКОПРОЧНЫХ АЛЮМИНИЙ-ЛИТИЕВЫХ СПЛАВОВ СИСТЕМЫ AL-CU-LI | 2017 |
|
RU2679787C1 |
Способ сварки трением с перемешиванием стыковых соединений алюминиевых сплавов | 2018 |
|
RU2686494C1 |
СПОСОБ СВАРКИ ТРЕНИЕМ С ПЕРЕМЕШИВАНИЕМ АЛЮМИНИЕВЫХ ДЕФОРМИРУЕМЫХ СПЛАВОВ | 2016 |
|
RU2634402C1 |
УСТАНОВКА ДЛЯ СВАРКИ ТРЕНИЕМ С ПЕРЕМЕШИВАНИЕМ | 2013 |
|
RU2562177C2 |
СПОСОБ СВАРКИ ТРЕНИЕМ С ПЕРЕМЕШИВАНИЕМ АЛЮМИНИЕВЫХ СПЛАВОВ | 2016 |
|
RU2634389C1 |
Способ сварки трением со сквозным перемешиванием оребренных панелей планера самолета | 2015 |
|
RU2620411C2 |
СПОСОБ ИМПУЛЬСНО-ДУГОВОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ АЛЮМИНИЕВЫХ СПЛАВОВ | 2013 |
|
RU2553769C2 |
Изобретение может быть использовано при изготовлении сварных конструкций из алюминиевых полуфабрикатов переменной толщины методом сварки трением с перемешиванием. В процессе сварки проводится пошаговый контроль температуры поверхности сварного шва позади сварочного инструмента. При фиксировании отклонения температуры на величину, превышающую 2°С по отношению к начальному значению, осуществляют корректировку осевого усилия Р и частоты вращения сварочного инструмента ω в соответствии с заданными формулами. Сварку осуществляют с использованием сварочного инструмента, который содержит рабочий наконечник и уступ, причем одна из упомянутых деталей является единым целым с корпусом сварочного инструмента, а другая установлена с упором в корпус сварочного инструмента через упругие элементы. Способ обеспечивает гарантированный полный провар корня шва, стабильное формирование бездефектного сварного соединения с минимальными остаточными деформациями свариваемых алюминиевых заготовок. 6 ил., 1 пр.
Способ сварки трением с перемешиванием алюминиевых заготовок переменной толщины, включающий приложение осевого усилия Р, действующего на корпус сварочного инструмента, вращающегося с частотой ω, который содержит рабочий наконечник и уступ, один из которых установлен с упором в корпус сварочного инструмента через упругие элементы, а другой жестко связан с корпусом сварочного инструмента, при этом проводят измерения температуры поверхности сварного шва Т в процессе сварки на удалении позади сварочного инструмента, составляющем от 10 до 100 мм, и осуществляют корректировку тепловложения за счет изменения осевого усилия Р и частоты вращения ω сварочного инструмента при изменении температуры Т более чем на 2°С от значения Тнач на начальном участке сварного шва по следующим формулам:
Р=Р0-К1(Т-Тнач)
ω=ω0-К2(Т-Тнач), где
Р0 и ω0 - осевое усилие и частота вращения инструмента соответственно на предыдущем шаге корректировки,
Тнач - температура на начальном участке сварного шва,
а коэффициенты К1 и К2 соответственно вычисляют с учетом начальных параметров сварки по следующим формулам:
где
Р и ω - осевое усилие и частота вращения инструмента на начальном этапе сварки,
- расстояние от сварочного инструмента до точки определения температуры поверхности сварного шва при ,
δ - толщина свариваемых кромок при 1<δ<10 [мм].
US 5893507 A, 13.04.1999 | |||
СПОСОБ ФРИКЦИОННОЙ СВАРКИ С ПЕРЕМЕШИВАНИЕМ МАТЕРИАЛА ЗАГОТОВОК (ВАРИАНТЫ) | 2005 |
|
RU2289496C1 |
Способ инерционной сварки трением | 1988 |
|
SU1493424A1 |
US 2005006441 A1, 13.01.2005 | |||
US 2005010209 A1, 24.02.2005. |
Авторы
Даты
2019-01-17—Публикация
2017-08-17—Подача