ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ ARC-СТАЛЬ ПОВЫШЕННОЙ ПРОЧНОСТИ Российский патент 2019 года по МПК C22C38/48 C22C38/16 

Описание патента на изобретение RU2681094C2

Изобретение относится к области металлургии, а именно к производству листового проката из хладостойкой стали повышенной прочности улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, машиностроении, мостостроении и других отраслях промышленности.

Стали с пределом текучести не менее 355 и 390 МПа остаются наиболее востребованными материалами для морских судокорпусных конструкций. По результатам стандартных испытаний на ударный изгиб малых образцов (KV) при температуре -60°С данных сталей отсутствие хрупких разрушений гарантируется в ограниченной области температур и толщин, т.е. возникают ограничения их применимости при строительстве различных элементов конструкций. Очевидно, что из-за тяжелых экономических и экологических последствий опасность возникновения хрупких разрушений должна быть полностью исключена, в связи с чем Российским морским регистром судоходства разработаны требования к сталям арктического применения, эксплуатируемым без ограничений в условиях Арктики для любых конструктивных элементов («Аrс» - стали).

В связи с задачами круглогодичного освоения Северного морского пути, транспортного обслуживания шельфовых месторождений и прибрежной инфраструктуры Арктики возникает потребность в строительстве широкого спектра судов ледового плавания различных типов (танкеров, контейнеровозов, судов снабжения и др.). Однако расширение районов эксплуатации, крайне тяжелые экономические и экологические последствия разрушений в экологически уязвимом бассейне Арктики определяют высокие требования к качеству этих сталей по предотвращению хрупких разрушений при низких температурах до -50…60°С. По параметрам хладостойкости и вязкости разрушения (трещиностойкости) применяемые материалы должны соответствовать новым требованиям к сталям класса «Аrс», «Правил..» Российского морского регистра судоходства [1, 2] и новой редакции ГОСТ Р 52927-2015 [3] на судостроительные стали, выдержать аттестационные испытания и обеспечить гарантированные характеристики работоспособности при низких температурах.

Известна хладостойкая сталь [патент РФ №2187574], используемая для создания тяжелонагруженных крупногабаритных конструкций, например, корпусов судов, оборудования для морских буровых платформ, сосудов, работающих под давлением, и т.д., эксплуатируемых при пониженных (до -50°С) температурах в условиях агрессивных сред типа морской воды, следующего химического состава, масс. % [4]:

углерод 0,07-0,11 кремний 0,20-0,40 марганец 0,90-1,70 никель 0,60-1,20 медь 0,30-0,65 ниобий 0,025-0,050 алюминий 0,02-0,06 кальций 0,005-0,030 сера 0,001-0,015 железо остальное.

Известная сталь [патент РФ №2187574] обеспечивает в листовом прокате толщиной до 70 мм высокую хладостойкость при температуре испытаний -60°С при сохранении уровня прочностных свойств за счет повышенного суммарного содержания никеля и марганца - 2,1-2,3%. Для обеспечения высокой сопротивляемости слоистым разрывам при сохранении свариваемости в данной стали соотношение кальция к сере Ca/S≥2, а параметр трещиностойкости Рсм1 () не более 0,23%.

Недостатками стали [патент РФ №2187574] являются:

- недостаточная хладостойкость (оцениваемая для данной стали по уровню работы удара) только до температур -60°С, в то время как надежная эксплуатация конструкции при температурах до -50…60°С может быть обеспечена, если работа удара гарантирована при температурах на 20°С ниже эксплуатационной;

- отсутствие гарантированных характеристик работоспособности при низких температурах (трещиностойкости по критерию критического раскрытия в вершине трещины CTOD, температуры вязко-хрупкого перехода Ткб и температуры нулевой пластичности NDT, определяемых на пробах полной толщины);

- достаточно высокое содержание марганца до 1,7%, что может приводить к сильному росту зерна в зоне термического влияния сварных соединений этой стали и ухудшению свариваемости.

Известна также хладостойкая сталь повышенной прочности [патент РФ №2269587], содержащая, масс. % [5]:

углерод 0,04-0,10 кремний 0,15-0,35 марганец 1,00-1,40 никель 0,10-0,80 медь 0,05-0,20 алюминий 0,02-0,06 ниобий 0,02-0,06 ванадий 0,02-0,10 сера 0,001-0,005 железо остальное.

Сталь [патент РФ №2269587] обеспечивает в листовом прокате толщиной до 50 мм высокую хладостойкость (высокий уровень ударной вязкости до температуры испытаний -80°С) и коррозионную стойкость, улучшенную свариваемость (в том числе, высокий уровень работы удара зоны термического влияния при температуре испытаний -60°С) и гарантированную сопротивляемость слоистым разрушениям при сохранении высокой прочности. Обеспечение указанных характеристик достигается за счет низкого содержания углерода в сочетании с легированием марганцем, никелем и медью и совместным микролегированием ниобием и ванадием в заданных пределах.

Основным недостатком стали [патент РФ №2269587] является отсутствие гарантированных характеристик работоспособности при низких температурах (трещиностойкости по критерию критического раскрытия в вершине трещины CTOD, температуры вязко-хрупкого перехода Ткб, температуры нулевой пластичности NDT), а также отсутствие ограничений по содержанию вредных примесей - фосфора и азота, приводящих к охрупчиванию при низких температурах.

Наиболее близкой к предлагаемой по достигаемым механическим свойствам и характеристикам работоспособности, выбранная в качестве прототипа, является хладостойкая свариваемая сталь для конструкций, работающих в экстремальных условиях [патент РФ №2452787], следующего состава, масс. % [6]:

углерод 0,06-0,12 кремний 0,15-0,35 марганец 0,60-1,20 никель 0,05-0,40 ванадий 0,03-0,05 ниобий 0,025-0,060 титан 0,002-0,020 алюминий 0,02-0,05 азот 0,005-0,008 кальций 0,01-0,03 сера 0,001-0,005 фосфор 0,001-0,012 железо остальное.

Сталь [патент РФ №2452787] обеспечивает в листовом прокате толщиной до 70 мм получение гарантированного предела текучести от 235 до 390 МПа и повышенной пластичности при температурах +20…-80°С, сопротивления слоистым разрушениям, высокой работы удара при температурах до -80°С, гарантированной трещиностойкости до -60°С, а также низких значений температуры вязко-хрупкого перехода Ткб не выше -30°С. Обеспечение требуемой прочности в сочетании с характеристиками хладостойкости и трещиностойкости достигается легированием низкоуглеродистой стали марганцем и никелем в пределах 0,65.. 1,60%, совместным микролегированием азотом, титаном, ванадием и ниобием в заданных пределах при ограничении содержания серы и фосфора.

Основным недостатком прототипа [патент РФ №2452787] является недостаточная сопротивляемость хрупким разрушениям по критерию значения температуры нулевой пластичности NDT согласно требованиям «Правил…» РМРС [1, 2] к сталям с индексом «аrс».

Техническим результатом изобретения является разработка листовой стали с гарантированным пределом текучести 355 и 390 МПа в толщинах от 25 до 50 мм, вязко-пластическими свойствами и характеристикам работоспособности согласно требованиям «Правил…» РМРС [1, 2] и ГОСТ Р 52927-2015 [3] к сталям с индексом «аrс» - трещиностойкости по критерию критического раскрытия в вершине трещины CTOD, температуры вязко-хрупкого перехода Ткб, определяемой при статических испытаниях на пробах натурной толщины, температуры нулевой пластичности NDT, определяемой при динамических испытаниях крупногабаритных проб с хрупкой наплавкой. Технический результат достигается тем, что хладостойкая свариваемая сталь, содержащая углерод, кремний, марганец, никель, ниобий, алюминий, азот, кальций, серу, фосфор и железо, дополнительно легирована никелем и содержит медь при следующем соотношении элементов, масс. %:

углерод 0,05-0,07 кремний 0,15-0,35 марганец 1,15-1,35 никель 0,55-0,70

хром не более 0,15

медь 0,05-0,20 ниобий 0,02-0,04

ванадий не более 0,01 титан не более 0,005

алюминий 0,02-0,05 азот 0,001-0,009 сера 0,001-0,005 фосфор 0,001-0,010 кальций 0,0001-0,0300 железо остальное,

причем величина углеродного эквивалента, рассчитываемого по формуле2 (), не должна превышать 0,38%.

Достижение технического результата обеспечивается за счет формирования в низкоуглеродистой стали пониженного легирования (по сравнению с существующими аналогами) ультрамелкозернистой ферритно-бейнитной структуры с квазиполигональным ферритом и бейнитом преимущественно гранулярной морфологии без наличия крупных областей реечного бейнита, понижающих характеристики работоспособности, хладостойкости и пластичности, и избыточного количества полигонального феррита, понижающего прочность, при использовании прецизионной двухстадийной термомеханической обработки с жесткой регламентацией основных термодеформационных параметров прокатки и ускоренного охлаждения.

Содержание углерода 0,05-0,07% достаточно для обеспечения требуемого уровня прочности, при этом достигается повышение свариваемости и работы удара при пониженных температурах как основного металла, так и зоны термического влияния, и снижение сегрегационной неоднородности металла. Уменьшение содержания углерода снижает твердость в зоне термического влияния, исключает появление холодных трещин. В сочетании с низким содержанием азота углерод в заявленных количествах исключает блокировку дислокаций примесями внедрения, повышает их подвижность, что способствует релаксации напряжений в сварных соединениях без трещинообразования.

Кремний добавлен для раскисления и повышения прочностных характеристик. При концентрации кремния менее 0,15% прочность стали ниже допустимой. При содержании кремния более 0,35% происходит значительное искажение кристаллической решетки α-Fe, что увеличивает ее сопротивление движению дислокаций и препятствует релаксации высоких упругих микронапряжений, вследствие чего происходит понижение хладостойкости, увеличение склонности к трещинообразованию (сталь не выдерживает испытания на холодный изгиб).

Марганец в количестве 1,15-1,35% позволяет гарантировать сочетание высоких показателей прочностных характеристик и характеристик хладостойкости. Повышение содержания марганца выше установленного предела в качестве легирующего элемента для низкоуглеродистой стали неперспективно вследствие:

- увеличения чувствительности стали к перегреву;

- усиления центральной сегрегации в непрерывнолитом слябе, приводящему к ухудшению низкотемпературной вязкости и повышению температуры вязко-хрупкого перехода.

Никель является одним из основных легирующих элементов, оказывающих наиболее существенное влияние как на прочностные характеристики, так и на пластичность и характеристики хладостойкости стали за счет усиления металлической компоненты межатомных связей в твердом растворе. Ослабляя взаимодействие дислокаций с атомами внедрения и сопротивление кристаллической решетки движению свободных дислокаций, легирование никелем приводит к повышению пластичности, трещиностойкости стали и понижению темепературы вязко-хрупкого перехода. Кроме того, никель повышает термодинамическую активность углерода, что обуславливает однородность состава аустенита перед началом превращения, и, как следствие, обеспечивает формирование дисперсной конечной структуры. Пределы содержания никеля 0,55-0,70% выбраны с целью повышения прочностных характеристик за счет твердорастворного механизма и увеличения доли бейнитной составляющей при сохранении высоких показателей хладостойкости и трещиностойкости без ухудшения свариваемости стали.

Медь оказывает аналогичное никелю влияние на свойства стали. Медь, как и никель, обладает сферической конфигурацией подвалентых электронов, ослабляет ковалентную составляющую межатомной связи при комплексном легировании стали, что обуславливает высокое сопротивление стали хрупким разрушениям. Однако растворимость меди в α-железе весьма незначительна, поэтому добавление избыточного количества меди приводит к снижению хладостойкости и трещиностойкости вследствие дисперсионного упрочнения. Повышенное содержание меди приводит к ее выделению в свободном состоянии в стыках зерен, вследствие чего в процессе горячей деформации могут образовываться горячие трещины. Для обеспечения высоких вязко-пластических свойств и характеристик работоспособности пределы содержания меди ограничены 0,05-0,20%.

Микролегирование ниобием способствует получению в результате горячей прокатки более однородной и мелкодисперсной структуры аустенита за счет ряда позитивных эффектов: а) ограничение роста зерен при нагреве заготовки под прокатку; б) сдерживание динамической рекристаллизации, которая в силу технологических ограничений может быть лишь частичной, приводя к структурной неоднородности; в) предотвращение роста новых зерен после завершения первичной статической рекристаллизации в паузах между обжатиями на черновой стадии; г) расширение температурного диапазона фрагментации, которая формирует в зернах аустенита новые границы после прекращения его рекристаллизации [7]. Однако добавление ниобия в избыточном количестве усиливает взаимодействие атомов внедрения с дислокациями, повышая степень их блокировки, что приводит к повышению прочности, но одновременно тормозит релаксацию напряжений и снижает низкотемпературную ударную вязкость основного металла, пластичность и свариваемость стали. Принятые пределы содержания ниобия 0,02-0,04% позволяют обеспечить высокую прочность при сохранении высоких значений работы удара вплоть до температур испытаний -80°С, а также низких температур вязко-хрупкого перехода.

Алюминий в количестве 0,02-0,05% вводится в сталь в качестве раскислителя и оказывает влияние на измельчение структуры. Однако при увеличении содержания алюминия свыше 0,05% увеличивается доля неметаллических включений типа окиси алюминия и снижается чистота стали.

Модифицирование алюминием в указанных пределах в совокупности с введением кальция в количестве 0,0001-0,03% в процессе внепечной обработки обеспечивает высокое металлургическое качество низкоуглеродистых низколегированных сталей, в частности чистоту по неметаллическим включениям металла, что позволит обеспечить свойства в направлении толщины листов и величину работы удара при пониженных температурах как основного металла, так и зоны термического влияния сварных соединений при использовании высокопроизводительной сварки при погонной энергии до 6 кДж/мм, а также повышенную хладостойкость и трещиностойкость стали.

Примесные элементы (фосфор, сера) и растворенные газы (кислород, азот, водород) оказывают отрицательное влияние на хладостойкость металла.

Сера, фосфор и азот являются вредными примесями, ограничение их содержания выбрано исходя из обеспечения металлургического качества стали. С увеличением содержания серы растет количество сульфидных включений, играющих роль концентраторов напряжений, ухудшающих z - свойства. Ограничение содержания серы до 0,005% способствует повышению пластичности и низкотемпературной ударной вязкости. Фосфор обуславливает повышенную склонность к хрупким разрушениям при понижении температуры испытаний и отпускной хрупкости за счет обогащения межзеренных границ. Ограничение содержания фосфора до 0,010% позволяет исключить отпускную хрупкость. Наиболее опасным следствием наличия азота в стали является снижение ударной вязкости и повышение порога хладноломкости, поэтому его содержание ограничено величиной 0,009%.

Пример: Сталь была выплавлена в дуговой электропечи и после внепечного рафинирования и вакуумирования разлита в слитки. Химический состав стали приведен в таблице 1.

Листовой прокат толщиной 25-50 мм изготавливали на реверсивном стане «5000» по технологии двухстадийной термической обработки с последующим ускоренным охлаждением с жесткой регламентацией основных параметров - температуры и времени нагрева, температуры и схемы обжатий на черновой и чистовой стадиях, температуры начала и окончания ускоренного охлаждения.

Механические свойства листового проката различных толщин представлены в таблице 2. Испытания на растяжение проводились на полнотолщинных призматических образцах в соответствии с ГОСТ 1497-84 при температурах +20 и минус 80°С, на ударный изгиб - на образцах типа 11 в соответствии с ГОСТ 9454 при температурах испытаний -20…-80°С, на ударный изгиб после механического старения - на образцах типа 11 в соответствии с ГОСТ 9454 при температуре испытания -60°С, на холодный изгиб в соответствии с п. 2.2.5 Ч. XIII СП РМРС. Испытание на растяжение в направлении толщины выполняли на образцах согласно ГОСТ 28870 с определением относительного сужения. Испытания на излом выполняли в соответствии с требованиями ГОСТ Р 52927-2015.

Сопротивление хрупкому разрушению листового проката оценивали:

- по критической температуре вязко-хрупкого перехода Ткб по методике, приведенной в [1] (часть XII, п. 2.4), соответствующей минимальной температуре, при которой в изломе технологической пробы полной толщины, испытанной на статический изгиб, наблюдается 70% волокнистой составляющей;

- по температуре нулевой пластичности NDT, определяемой по результатам динамических испытаний образцов с хрупкой наплавкой по методике, приведенной в [1] (часть XII, п. 2.3.). Эта температура характеризует условия, при которых материал не способен затормозить трещину при ударном нагружении со скоростью порядка 5 м/сек и достижения в нем напряжений предела текучести.

Трещиностойкость по критерию раскрытия в вершине трещины CTOD оценивали по требованиям Британского стандарта BS 7448 р. 1 [8]. Для испытаний были использованы образцы на статический изгиб прямоугольного сечения с односторонним краевым надрезом (тип SENB по BS 7448) и гладкими боковыми поверхностями. Выращивание усталостной трещины проводилось при частоте 5-8 Гц. Суммарное число циклов нагружения для образца составило не менее 55000. При испытаниях записывали диаграмму деформирования в координатах "нагрузка - раскрытие берегов трещины". Определение перемещений (раскрытия берегов трещины) производилось датчиком DSR 10/50.

Результаты механических испытаний (средние значения по результатам двух испытаний на растяжение и трех - на ударный изгиб) приведены в таблице 2.

Результаты определения характеристик работоспособности представлены в таблице 3.

Испытания листового проката толщиной 25-50 мм показали, что сталь выбранного химического состава (составы №№2-4 таблицы 1), изготовленная по технологии двухстадийной термомеханической обработки с последующим ускоренным охлаждением, обеспечивает гарантированный предел текучести 355-390 МПа, высокие вязко-пластические свойства и более высокую сопротивляемость хрупким разрушениям согласно требованиям «Правил…» РМРС [1, 2] и ГОСТ Р 52927-2015 [3] к характеристикам работоспособности сталей с индексом «аrс» - трещиностойкости CTOD, температуры вязко-хрупкого перехода Ткб ([6]), температуры нулевой пластичности NDT.

В случаях отклонения содержания легирующих элементов от предложенного химического состава происходит понижение предела текучести до значений ниже 355 МПа (для стали состава №1) или работы удара до значений ниже 50 Дж при температуре испытаний -60°С и доли волокнитстой составляющей в изломах проб натурной толщины ниже 80% (для стали состава №5) (таблица 2).

Источники информации, использованные при составлении описания изобретения

1. Правила классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ. Российский морской регистр судоходства, 2015.

2. Правила классификации и постройки морских судов. Российский Морской Регистр судоходства, 2015 г.

3. ГОСТ Р 52927-2015 «Прокат для судостроения из стали нормальной, повышенной и высокой прочности. Технические условия».

4. Патент Российской Федерации №2187574 «Хладостойкая сталь» от 20.08.2002 г., МПК С22С 38/16.

5. Патент Российской Федерации №2269587 «Хладостойкая сталь повышенной прочности», от 10.02.2006 г., МПК С22С 38/16 (2006.01).

6. Патент Российской Федерации №2452787 «Хладостойкая свариваемая сталь для конструкций, работающих в экстремальных условиях» от 10.06.2012 г., МПК С22С 38/14 (2006.01) - прототип.

7. Е.И. Хлусова, Т.В. Сошина, А.А. Зисман // Влияние микролегирования ниобием на рекристаллизационные процессы в аустените низкоуглеродистых легированных сталей // Вопросы материаловедения, 2013, №1 (73), с. 31-36

8. BS 7448. Fracture Mechanics Toughness Test. Part 1. Method for determination of K1c, critical CTOD and critical J - values of metallic materials, 1991.

Похожие патенты RU2681094C2

название год авторы номер документа
ХЛАДОСТОЙКАЯ ARC-СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ 2012
  • Малышевский Виктор Андреевич
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Сошина Татьяна Викторовна
  • Хомякова Надежда Федоровна
  • Милюц Валерий Георгиевич
  • Павлова Алла Григорьевна
  • Батов Юрий Матвеевич
  • Ларионов Александр Викторович
  • Иванова Елена Александровна
RU2507296C1
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ ARC-СТАЛЬ 2012
  • Малышевский Виктор Андреевич
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Хомякова Надежда Федоровна
  • Милюц Валерий Георгиевич
  • Павлова Алла Григорьевна
  • Пазилова Ульяна Анатольевна
  • Афанасьев Сергей Юрьевич
  • Гусев Максим Анатольевич
  • Левагин Евгений Юрьевич
RU2507295C1
ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ ДЛЯ КОНСТРУКЦИЙ, РАБОТАЮЩИХ В ЭКСТРЕМАЛЬНЫХ УСЛОВИЯХ 2010
  • Галкин Виталий Владимирович
  • Денисов Сергей Владимирович
  • Стеканов Павел Александрович
  • Малышевский Виктор Андреевич
  • Хлусова Елена Игоревна
  • Орлов Виктор Валерьевич
  • Сыч Ольга Васильевна
RU2452787C2
ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ (ВАРИАНТЫ) 2017
  • Голубева Марина Васильевна
  • Орлов Виктор Валерьевич
  • Сыч Ольга Васильевна
  • Хлусова Елена Игоревна
  • Яковлева Екатерина Александровна
  • Яшина Екатерина Александровна
  • Митрофанов Артем Викторович
  • Сычев Олег Николаевич
  • Городецкий Вячеслав Игоревич
RU2653748C1
Способ производства горячекатаных листов из высокопрочной стали 2017
  • Михеев Вячеслав Викторович
  • Городецкий Вячеслав Игоревич
  • Сычев Олег Николаевич
  • Смелов Антон Игоревич
  • Корчагин Андрей Михайлович
  • Сахаров Максим Сергеевич
  • Мальцев Андрей Борисович
  • Ваурин Виталий Васильевич
RU2652281C1
СПОСОБ ПРОИЗВОДСТВА ХЛАДОСТОЙКОГО ЛИСТОВОГО ПРОКАТА 2010
  • Галкин Виталий Владимирович
  • Денисов Сергей Владимирович
  • Стеканов Павел Александрович
  • Орыщенко Алексей Сергеевич
  • Хлусова Елена Игоревна
  • Орлов Виктор Валерьевич
  • Сувориков Виктор Александрович
RU2432403C1
ХЛАДОСТОЙКАЯ СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ 2011
  • Галкин Виталий Владимирович
  • Денисов Сергей Владимирович
  • Демидченко Юрий Павлович
  • Малышевский Виктор Андреевич
  • Семичева Тамара Григорьевна
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Орлов Виктор Валерьевич
  • Маслеников Александр Витальевич
  • Милейковский Андрей Борисович
RU2458176C1
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ СТАЛЬ 2014
  • Мальцев Андрей Борисович
  • Томин Александр Александрович
  • Рыбаков Сергей Александрович
  • Шеремет Наталия Павловна
  • Малышевский Виктор Андреевич
  • Орлов Виктор Валерьевич
  • Хлусова Елена Игоревна
  • Легостаев Юрий Леонидович
  • Семичева Тамара Григорьевна
  • Малахов Николай Викторович
  • Голосиенко Сергей Анатольевич
RU2562734C1
ВЫСОКОПРОЧНАЯ СВАРИВАЕМАЯ ХЛАДОСТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2019
  • Сыч Ольга Васильевна
  • Орлов Виктор Валерьевич
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Голубева Марина Васильевна
  • Яшина Екатерина Александровна
  • Мотовилина Галина Дмитриевна
RU2731223C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОЛЕГИРОВАННОГО ХЛАДОСТОЙКОГО СВАРИВАЕМОГО ЛИСТОВОГО ПРОКАТА 2018
  • Зайцев Александр Иванович
  • Карамышева Наталия Анатольевна
  • Чиркина Ирина Николаевна
RU2690398C1

Реферат патента 2019 года ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ ARC-СТАЛЬ ПОВЫШЕННОЙ ПРОЧНОСТИ

Изобретение относится к области металлургии, а именно к производству листового проката из хладостойкой arc-стали повышенной прочности и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, машиностроении, мостостроении и других отраслях промышленности. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,05-0,07, кремний 0,15-0,35, марганец 1,15-1,35, никель 0,55-0,70, хром не более 0,15, медь 0,05-0,20, ниобий 0,02-0,04, ванадий не более 0,01, титан не более 0,005, алюминий 0,02-0,05, азот 0,001-0,009, сера 0,001-0,005, фосфор 0,001-0,010, кальций 0,0001-0,0300, железо остальное. Сталь имеет величину углеродного эквивалента Сэкв, составляющую не более 0,38%, и ультрамелкозернистую ферритно-бейнитную структуру с квазиполигональным ферритом и бейнитом. Обеспечиваются гарантированные предел текучести 355 и 390 МПа в толщинах от 25 до 50 мм, вязкопластические свойства и характеристики трещиностойкости по критерию критического раскрытия в вершине трещины CTOD, температуре вязкохрупкого перехода Ткб и температуре нулевой пластичности NDT. 3 табл., 1 пр.

Формула изобретения RU 2 681 094 C2

Хладостойкая свариваемая сталь повышенной прочности, содержащая углерод, кремний, марганец, никель, хром, медь, ниобий, ванадий, титан, алюминий, азот, кальций, серу, фосфор и железо, отличающаяся тем, что она содержит элементы при следующем соотношении, мас.%:

углерод 0,05-0,07,

кремний 0,15-0,35,

марганец 1,15-1,35,

никель 0,55-0,70,

хром не более 0,15,

медь 0,05-0,20,

ниобий 0,02-0,04,

ванадий не более 0,01,

титан не более 0,005,

алюминий 0,02-0,05,

азот 0,001-0,009,

сера 0,001-0,005,

фосфор 0,001-0,010,

кальций 0,0001-0,0300,

железо остальное,

при этом она имеет величину углеродного эквивалента Сэкв, составляющую не более 0,38%, и ультрамелкозернистую ферритно-бейнитную структуру с квазиполигональным ферритом и бейнитом.

Документы, цитированные в отчете о поиске Патент 2019 года RU2681094C2

EP 3000905 A1, 30.03.2016
ШТРИПСОВАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2009
  • Немтинов Александр Анатольевич
  • Ордин Владимир Георгиевич
  • Скорохватов Николай Борисович
  • Корчагин Андрей Михайлович
  • Шаталов Сергей Викторович
  • Ефимов Семен Викторович
  • Тихонов Сергей Михайлович
RU2420603C1
СТАЛЬ С ВЫСОКИМ СОПРОТИВЛЕНИЕМ НА РАЗРЫВ И СПОСОБ ЕЕ ПРОИЗВОДСТВА 1998
  • Коо Дзайоунг
  • Бангару Нарасимха-Рао В.
  • Льютон Майкл Дж.
  • Петерсен Клиффорд В.
  • Фудзивара Казуки
  • Окагути Судзи
  • Хамада Масахико
  • Комизо Ю-Ити
RU2205245C2
СПОСОБ ПРОИЗВОДСТВА ПРОКАТА 2008
  • Морозов Юрий Дмитриевич
  • Шахпазов Евгений Христофорович
  • Чевская Ольга Николаевна
  • Матросов Максим Юрьевич
  • Настич Сергей Юрьевич
  • Борцов Александр Николаевич
RU2355782C1
ХЛАДОСТОЙКАЯ СТАЛЬ ПОВЫШЕННОЙ ПРОЧНОСТИ 2004
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Владимиров Николай Федорович
  • Семичева Тамара Григорьевна
  • Хлусова Елена Игоревна
  • Зыков Вячеслав Владимирович
  • Гейер Владимир Васильевич
  • Ордин Владимир Георгиевич
  • Середа Ирина Ричардовна
  • Голованов Александр Васильевич
  • Бойченко Виктор Степанович
  • Лесина Ольга Анатольевна
  • Арианов Сергей Владимирович
RU2269587C1
ХЛАДОСТОЙКАЯ ARC-СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ 2012
  • Малышевский Виктор Андреевич
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Сошина Татьяна Викторовна
  • Хомякова Надежда Федоровна
  • Милюц Валерий Георгиевич
  • Павлова Алла Григорьевна
  • Батов Юрий Матвеевич
  • Ларионов Александр Викторович
  • Иванова Елена Александровна
RU2507296C1
СТАЛЬНОЙ ЛИСТ ДЛЯ ПРОИЗВОДСТВА МАГИСТРАЛЬНОЙ ТРУБЫ С ПРЕВОСХОДНОЙ ПРОЧНОСТЬЮ И ПЛАСТИЧНОСТЬЮ И СПОСОБ ИЗГОТОВЛЕНИЯ СТАЛЬНОГО ЛИСТА 2009
  • Исикава Хадзиме
  • Уемори Риюдзи
  • Ватанабе
  • Мамада Нобухико
RU2478133C1
US 20160273066 A1, 22.09.2016
Аустенитная сталь 1986
  • Солнцев Юрий Порфирьевич
  • Степанов Георгий Александрович
  • Кривцов Юрий Семенович
  • Ющенко Константин Андреевич
  • Федорова Ольга Александровна
  • Колчин Георгий Георгиевич
SU1375681A1

RU 2 681 094 C2

Авторы

Хлусова Елена Игоревна

Сыч Ольга Васильевна

Голосиенко Сергей Анатольевич

Яшина Екатерина Александровна

Пазилова Ульяна Анатольевна

Новоскольцев Никита Станиславович

Голубева Марина Васильевна

Масанин Николай Игоревич

Гусев Максим Андреевич

Беляев Виталий Анатольевич

Даты

2019-03-04Публикация

2016-12-23Подача