Изобретение относится к области металлургии, а именно к производству листового проката в толщинах до 50 мм из высокопрочной свариваемой хладостойкой стали для изготовления тяжелонагруженной техники, подъемно-транспортного оборудования и ледостойких морских платформ, эксплуатирующихся в условиях низких температур.
Работа в сложных условиях эксплуатации, в том числе при воздействии климатических, динамических и циклических нагрузок, обуславливает высокие требования к применяемым материалам по сочетанию прочностных характеристик и пластичности, низкотемпературной ударной вязкости (до температуры -70°С) и хорошей свариваемости без проведения дополнительных технологических мероприятий (предварительного подогрева и послесварочной термической обработки при ограничении углеродного эквивалента Сэкв1).
Применение высокопрочных хладостойких сталей с пределом текучести не менее 690 МПа в толщинах до 50 мм позволяет уменьшить вес сложных конструкций и повысить их надежность. При этом требование к обеспечению свариваемости (косвенно оцениваемой по значению Сэкв) таких материалов существенно ограничивает возможности обеспечения прочностных характеристик и всего комплекса свойств только за счет повышения уровня легирования, в связи с чем при создании новых высокопрочных хладостойких сталей перспективна концепция экономного легирования при оптимизации технологии производства.
Известна высокопрочная хладостойкая сталь [патент РФ №2507295], используемая в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности, следующего химического состава, мас. % [1]:
Известная сталь [патент РФ №2507295] обеспечивает в листовом прокате толщиной до 50 мм высокую прочность (предел текучести - не менее 690 МПа) и гарантированные характеристики работоспособности, которые достигаются за счет повышенного содержания никеля, хрома и меди. Однако известная сталь имеет высокое значение углеродного эквивалента (0,57≤Сэкв≤0,71%), что может негативно сказаться на ее свариваемости низколегированными сварочными материалами.
Известна также хладостойкая сталь высокой прочности [патент РФ №2507296], содержащая, мас. % [2]:
Сталь [патент РФ №2507296] обеспечивает в листовом прокате толщиной до 50 мм высокие вязко-пластические свойства, гарантированные характеристики сопротивляемости хрупким разрушениям и температуры нулевой пластичности, однако такое содержание никеля, меди и молибдена позволяет обеспечить предел текучести не менее 500 МПа. При этом сталь обладает хорошей свариваемостью, оцениваемой по углеродному эквиваленту (0,37≤Сэкв≤0,54%).
Также известна высокопрочная свариваемая сталь [патент RU №2573153], предназначенная для изготовления высокопрочного холоднокатаного стального листа, содержащая, мас. % [3]:
при необходимости, по меньшей мере, один элемент из:
Изготавливается холоднокатаный стальной лист [патент RU №2573153]. Отсутствуют данные о толщине листового проката, характеристиках прочности и хладостойкости основного металла и зоны термического влияния при температурах до -70°С, которые и определяют применимость и надежность материала для строительства сложных сварных конструкций, работающих при низких температурах.
Наиболее близкой к предлагаемой по достигаемым прочностным и вязко-пластическим свойствам, выбранная в качестве прототипа, является сталь [патент РФ №2255999], предназначенная для лонжеронов и других несущих узлов большегрузных автомобилей, работающих в условиях Крайнего Севера, следующего состава, мас. % [4]:
Сталь [патент РФ №2255999] обеспечивает в листовом прокате толщиной до 50 мм требуемую прочность (предел текучести - не менее 690 МПа), повышенный уровень ударной вязкости KCV при температуре испытаний -70°С (не менее 40 Дж/см2). Недостатками прототипа являются неудовлетворительная свариваемость (величина углеродного эквивалента Сэкв достигает значения 0,78%) и отсутствие гарантированной величины ударной вязкости зоны термического влияния сварного соединения при температуре испытаний -70°С.
Техническим результатом изобретения является разработка высокопрочной свариваемой хладостойкой стали с углеродным эквивалентом Сэкв не более 0,53% и изделия из нее, которые обеспечивают гарантированный предел текучести 690 МПа в толщинах от 8 до 50 мм, ударную вязкость KCV основного металла и зоны термического влияния сварных соединений не менее 35 Дж/см2 при температуре испытаний -70°С.
Технический результат достигается тем, что высокопрочная свариваемая хладостойкая сталь, содержащая углерод, кремний, марганец, хром, никель, медь, ниобий, алюминий, азот, фосфор, серу, кальций и железо, дополнительно содержит молибден, цинк, висмут и сурьму, при следующем соотношении элементов, масс. %:
причем величина углеродного эквивалента, рассчитываемого по формуле: не должна превышать 0,53%.
Достижение технического результата обеспечивается за счет обеспечения в хромоникельмедьмолибденовой стали пониженного легирования (по сравнению с существующими аналогами) формирования квазиоднородной по толщине листового проката до 50 мм мелкодисперсной бейнитной или бейнитно-мартенситной структуры с высокой плотностью дислокаций при минимальном содержании (или полном отсутствии) структурно свободного феррита после горячей пластической деформации с регламентацией схемы обжатий в области протекания динамической и статической рекристаллизации. Выбранная комбинация легирующих элементов обеспечивает требуемую прокаливаемость при последующей закалке и отпускоустойчивость при отпуске и сварочном нагреве. Это достигается легированием марганцем, хромом, медью, молибденом и никелем. Сопротивление разупрочнению при нагреве обеспечивается за счет мелкодисперсных специальных карбидов молибдена и ниобия.
Содержание углерода 0,08-0,10% достаточно для обеспечения требуемого уровня прочности, при этом ограничение максимального содержания углерода значением 0,10% обеспечивает хорошую свариваемость и высокий уровень низкотемпературной ударной вязкости как основного металла, так и зоны термического влияния. Более того, низкое содержание углерода снижает сегрегационную неоднородность металла, обеспечивает отсутствие областей с завышенной твердостью в зоне термического влияния, исключает появление холодных трещин при сварке. В сочетании с низким содержанием азота углерод в заявленных количествах исключает блокировку дислокаций примесями внедрения, повышает их подвижность, что способствует релаксации напряжений в сварных соединениях без трещинообразования [5].
Кремний добавлен для раскисления и повышения прочностных характеристик. При концентрации кремния менее 0,30% прочность стали ниже допустимой. При содержании кремния более 0,40% происходит значительное искажение кристаллической решетки α-Fe, что увеличивает ее сопротивление движению дислокаций и препятствует релаксации высоких упругих микронапряжений, вследствие чего происходит понижение низкотемпературной ударной вязкости основного металла и зоны термического влияния, увеличение склонности к трещинообразованию (сталь не выдерживает испытания на холодный изгиб) [6-8].
Марганец в количестве 0,65-0,75% позволяет гарантировать высокий уровень прочностных характеристик и низкотемпературной ударной вязкости. Повышение содержания марганца в качестве легирующего элемента для низкоуглеродистой стали с большой прочностью неперспективно вследствие:
- увеличения чувствительности к перегреву уже при содержании марганца около 1%;
- значительного развития склонности к отпускной хрупкости при концентрации марганца свыше 1,5% в сочетании с неизбежным наличием в стали фосфора, поскольку марганец и фосфор являются горофильными элементами, концентрирующимися при замедленном охлаждении по границам зерен;
- усиления центральной сегрегации в непрерывнолитом слябе и понижения низкотемпературной вязкости основного металла [6-8].
Легирование стали хромом повышает прокаливаемость стали в листах толщиной до 50 мм, что особенно важно при низком содержании углерода (не более 0,10%), способствует уменьшению хладноломкости. Однако избыток хрома обуславливает понижение ударной вязкости как основного металла, так и зоны термического влияния. Принятые пределы содержания хрома 0,45-0,55% не ухудшают характеристики свариваемости и хладостойкости при сохранении требуемой прокаливаемости стали [6-8].
Никель, понижая критические точки превращения и сдвигая на термокинетической диаграмме (ТКД) вправо кривые распада аустенита, обеспечивает протекание γ→α-превращения при закалке по сдвиговому механизму. Никель является легирующим элементом, оказывающим наиболее существенное благоприятное влияние на прочностные характеристики, пластичность и низкотемпературную вязкость высокопрочной стали. Пределы содержания никеля 1,65-1,75% выбраны с целью одновременного повышения прочностных характеристик и ударной вязкости KCV как основного металла, так и зоны термического влияния при температурах испытаний до -70°С без ухудшения свариваемости стали [6-8].
Медь оказывает аналогичное никелю влияние на свойства стали, однако ее растворимость в α-железе весьма незначительна, поэтому добавление избыточного количества меди (более 1%) снижает вязкость основного металла и зоны термического влияния вследствие дисперсионного упрочнения, что может привести к образованию трещин в процессе горячей деформации. Во избежание ухудшения качества поверхности проката и охрупчивания стали пределы содержания меди ограничены 0,50-0,60% [6-8].
Молибден в хромоникелевой стали в количестве 0,30-0,50%, существенно повышая устойчивость аустенита, сдвигает на ТКД вправо область выделения феррита и снижает температуру бейнитного превращения. Это обеспечивает формирование в стали после закалки продуктов низкотемпературного превращения (реечного бейнита и мартенсита) с высоким уровнем прочностных характеристик. Совместное легирование молибдена с ниобием наиболее эффективно способствует упрочнению стали. Кроме того, молибден оказывает сдерживающее влияние на диффузионную подвижность фосфора и ослабляет склонность стали к отпускной хрупкости. Легирование стали молибденом совместно с никелем существенно повышает хладостойкость стали как основного металла, так и зоны термического влияния. Однако добавление молибдена в избыточном количестве ухудшает низкотемпературную ударную вязкость зоны термического влияния и свариваемость стали, поэтому верхний предел его содержания ограничен значением 0,35% [6-8].
Микролегирование ниобием способствует получению в результате горячей прокатки более однородной и мелкодисперсной структуры аустенита за счет ряда позитивных эффектов: а) ограничение роста зерен при нагреве заготовки под прокатку; б) сдерживание динамической рекристаллизации, которая в силу технологических ограничений может быть лишь частичной, приводя к структурной неоднородности; в) предотвращение роста новых зерен после завершения первичной статической рекристаллизации в паузах между обжатиями на черновой стадии; г) расширение температурного диапазона фрагментации, которая формирует в зернах аустенита новые границы после прекращения его рекристаллизации [9]. Однако добавление ниобия в избыточном количестве усиливает взаимодействие атомов внедрения с дислокациями, повышая степень их блокировки, что приводит к повышению прочности, но одновременно тормозит релаксацию напряжений и снижает низкотемпературную ударную вязкость основного металла, пластичность и свариваемость стали. Принятые пределы содержания ниобия 0,02-0,04% позволяют обеспечить высокую прочность при сохранении ударной вязкости не менее 35 Дж/см2 как основного металла, так и зоны термического влияния вплоть до температур испытаний -70°С [6-8].
Введение в состав стали алюминия в количестве 0,02-0,05% в сочетании с химически активными элементами, таким как кальций, в количестве 0,0001-0,01% способствует образованию благоприятной (глобулярной) формы неметаллических включений, уменьшает количество сульфидных включений, снижает содержание кислорода и серы, очищает и упрочняет границы зерен и измельчает структуру литой стали, что приводит к повышению прочности, пластичности и ударной вязкости, особенно при низких температурах. Воздействие алюминия на свойства стали малоэффективно при его содержании менее 0,02%, а при содержании выше 0,05% вызывает избыточное обогащение границ зерен неметаллическими включениями, что отрицательно сказывается на свойствах стали. Более того, избыточное содержание алюминия отрицательно сказывается на разливаемости стали.
Повышенное содержание кальция при неблагоприятном соотношении Са/Аl приводит к образованию грубых неметаллических включений, плохо удаляющихся из металла, что оказывает охрупчивающее влияние на сталь и понижает пластичность металла при испытаниях в направлении толщины. В связи с этим верхний предел содержания кальция не должен превышать 0,01%.
Висмут, как и алюминий, оказывает рафинирующее влияние на сталь, уменьшая количество и переводя в глобулярную форму неметаллические включения. Наличие в стали висмута от 0,0001 до 0,005% также способствует формированию мелкодисперсной структуры с благоприятным перераспределением основных легирующих элементов между твердым раствором и карбидной фазы, что обеспечивает повышение значений ударной вязкости. Висмут при кристаллизации располагается на границе раздела жидкой и твердой фазы, что препятствует росту первичной фазы (зерна). Измельчение дендритной структуры твердого раствора способствует образованию эвтектических колоний эвтектических систем меньших размеров, а образующие их карбиды дисперсны и стремятся к округлой форме [10, 11].
В стали ограничено содержание ряда цветных примесей, таких как сурьма и цинк, которые при концентрации не менее 0,0001% способствуют повышению прочности стали. Повышение содержания сурьмы более 0,005% и цинка более 0,010% может привести к образованию легкоплавких эвтектик в межосных участках дендритов. Образование таких эвтектик способствует формированию поверхностных и внутренних дефектов непрерывнолитых заготовок, провоцируя зарождение различного рода несплошностей и микротрещин, наследуемых готовым прокатом, что не позволяет обеспечить высокое качество листового проката по требуемым механическим свойствам и сопротивлению хрупким разрушениям [12-14]. Снижение межкристаллитной прочности из-за присутствия легкоплавких примесей приводит к охрупчиванию металла и резкому ухудшению технологической пластичности при высоких температурах. Весьма заметно влияние чистоты стали и на такую важную характеристику, как порог хладноломкости. Цветные примеси при определенных концентрациях имеют очень сильную склонность к сегрегированию на границах зерен [15], что приводит к снижению ударной вязкости при низких температурах, в особенности после механического старения, и ряда других свойств, поэтому их содержание должно быть строго ограничено. Увеличение суммарного содержания сурьмы и цинка более 0,015% также оказывает отрицательное влияние на горячую и холодную пластичность стали при прокатке и гибке листового проката.
Сера, фосфор и азот являются вредными примесями, ограничение их содержания выбрано исходя из обеспечения металлургического качества стали. С увеличением содержания серы растет количество сульфидных включений, играющих роль концентраторов напряжений, ухудшающих z - свойства. Ограничение содержания серы до 0,005% способствует повышению пластичности и низкотемпературной ударной вязкости. Фосфор обуславливает повышенную склонность к хрупким разрушениям при понижении температуры испытаний и отпускной хрупкости за счет обогащения межзеренных границ. Ограничение содержания фосфора до 0,012% в сочетании с введением молибдена в количестве 0,30-0,35% позволяет исключить отпускную хрупкость [6-8, 15].
Введение в состав стали азота в количестве 0,001-0,008% позволяет обеспечить в стали требуемую прочность за счет карбонитридного упрочнения (часть атомов углерода замещается азотом), при содержании азота менее 0,001% такого эффекта не наблюдается. Однако при содержании азота более 0,008% происходит снижение ударной вязкости и повышение порога хладноломкости [16].
Ограничение величины углеродного эквивалента до 0,53% исключает образование холодных трещин при сварке и гарантирует хорошую свариваемость стали, а также обеспечивает получение ударной вязкости зоны термического влияния не менее 35 Дж/см2 вплоть до температур испытаний -70°С.
Пример: Выплавку стали осуществляли в 370-тонном кислородном конвертере, с последующей десульфурацией гранулированным магнием. В сталеразливочном ковше осуществляли первичное легирование, предварительное раскисление и обработку металла твердошлаковыми смесями. На установке печь-ковш (УПК) осуществляли продувку металла аргоном и окончательное легирование, после чего производилась вакуумная дегазация на установке вакуумирования стали (УВС), с последующей продувкой металла аргоном. Разливку металла производили на машине непрерывного литья заготовок (МНЛЗ). Химический состав стали приведен в таблице 1.
Листовой прокат изготавливали на реверсивном стане с использованием одностадийной схемы прокатки для толщин до 25 мм и двухстадийной - для толщин 25-50 мм, с последующим охлаждением в штабеле. Листовой прокат подвергался термической обработке (закалке с высоким отпуском) по заданным режимам [17].
Механических свойства листового проката различных толщин представлены в таблице 2. Испытания на растяжение проводились на цилиндрических образцах типа III в соответствии с ГОСТ 1497, на ударный изгиб - на образцах типа 11 в соответствии с ГОСТ 9454 при температуре испытаний -70°С, на холодный изгиб - в соответствии с ГОСТ 14019.
Свариваемость оценивали по результатам расчета углеродного эквивалента Сэкв по вышеприведенной формуле и проведения комплекса механических испытаний сварных соединений листового проката.
Сварные соединения на пробах с К-образной разделкой кромок полуавтоматической сваркой порошковой проволокой в среде защитного газа Аr+СО2, отбор образцов и объем испытаний выполняли в соответствии с требованиями ГОСТ Р ИСО 1561-1-2009. От сварных проб отбирали образцы для испытаний на растяжение (СТБ ЕН 895), ударный изгиб с надрезом по сварному шву и зоне термического влияния с надрезом на расстоянии 2 мм от линии сплавления (СТБ EH 875), на изгиб (СТБ ЕН 910), на определение твердости по Виккерсу (СТБ ЕН 1043-1).
Результаты испытаний сварных образцов высокопрочной хладостойкой стали представлены в таблице 3.
Испытания листового проката толщиной 12-50 мм и его сварных соединений показали, что сталь выбранного химического состава (составы №№2-4 таблицы 1) с углеродным эквивалентом не более 0,53%, изготовленная по технологии горячей прокатки с последующей термической обработкой (закалкой с отпуском), обеспечивает достижение требуемой прочности (предела текучести - не менее 690 МПа) и гарантированной ударной вязкости KCV зоны термического влияния сварных соединений - не менее 35 Дж/см2 при температуре испытаний -70°С.
В случаях отклонения содержания легирующих элементов от предложенного химического состава происходит:
- понижение предела текучести до значений ниже 690 МПа (для стали состава №1) или получение значений на пределе требований для листов больших толщин (для стали состава №6);
- снижение ударной вязкости основного металла до значений ниже 35 Дж/см2 при температуре испытаний -70°С (для стали составов №5 и №7) (таблицы 1, 2).
Известная сталь (прототип) состава №8 (таблицы 1) имеет повышенный углеродный эквивалент Сэкв=0,78%, что ухудшает свариваемость стали и понижает ударную вязкость при температуре испытаний -70°С в зоне термического влияния сварного соединения.
Источники информации, использованные при составлении описания изобретения:
1. Патент Российской Федерации №2507295 «Высокопрочная хладостойкая arc-сталь». - Бюллетень изобретения №5 от 20.02.2014 г. - МПК С22С 38/48.
2. Патент Российской Федерации №2507296 «Хладостойкая arc-сталь высокой прочности». - Бюллетень изобретения №5 от 20.02.2014 г. - МПК С22С 38/48.
3. Патент RU №2573153 «Высокопрочный холоднокатанный стальной лист, имеющий превосходную пригодность к отбортовке-вытяжке и прецизионную перфорируемость, и способ его изготовления». - 27.07.2011 г. - С22С 38/38.
4. Патент Российской Федерации №2255999 «Низколегированная сталь». - Бюллетень изобретения №19 от 10.07.2005 г. - МПК С22С 38/50, 38/58 - прототип.
5. Л.С. Лившиц, А.Н. Хакимов. Металловедение сварки и термическая обработка сварных соединений // М.: Машиностроение. - 1989. - 336 с.
6. А.П. Гуляев. Металловедение // М.: Металлургия. - 1977. - 647 с.
7. Материалы для судостроения и морской техники // Справочное издание НПО «Профессионал» «Судостроительные стали» под редакцией академика РАН Горынина И.В. - 2009. - Т. 1. - 775 с.
8. Э Гудремон. Специальные стали // М.: Металлургия. - 1960. - Т. 1, 2. - 1638 с.
9. Е.И. Хлусова, Т.В. Сошина, А.А. Зисман. Влияние микролегирования ниобием на рекристаллизационные процессы в аустените низкоуглеродистых легированных сталей // Вопросы материаловедения. - 2013. - №1 (73). - С.31-36.
10. Ю.М. Юхин, Ю.И. Михайлов. Химия висмутовых соединений и материалов // Новосибирск: Издательство СО РАН. - 2001. - 360 с.
11. Перевод с английского под редакцией В.Е. Плющева // Справочник по редким металлам // М.: Издательство «Мир». - 1965. - 945 с.
12. Ю.М. Чижиков. Прокатываемость стали и сплавов // М.: Металлургиздат. - 1961. - 451 с.
13. М.Л. Бернштейн, СВ. Добаткин, Л.М. Капуткина, С.Д. Прокошкин. Диаграммы горячей деформации, структура и свойства сталей // М.: Металлургия. -1989. - 544 с.
14. И.Л. Бродецкий, Б.Ф. Белов, Л.А. Позняк, А.И. Троцан. Влияние адсорбционных процессов в границах зерен на хладостойкость низколегированных сталей // ФХММ. - 1995. - №2. - С. 124-128.
15. М.А. Штремель. Проблемы металлургического качества стали (неметаллические включения) // МиТОМ. - 1980. - №8. - С. 2-6.
16. М.И. Гольдштейн, С.В. Грачев, Ю.Г. Векслер. Специальные стали // М.: Металлургия. - 1985. - 408 с.
17. О.В. Сыч, М.В. Голубева, Е.И. Хлусова. Разработка хладостойкой свариваемой стали категории прочности 690 МПа для тяжелонагруженной техники, работающей в арктических условиях // Тяжелое машиностроение. - 2018. - №4. - С. 17-25.
название | год | авторы | номер документа |
---|---|---|---|
ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ ARC-СТАЛЬ ПОВЫШЕННОЙ ПРОЧНОСТИ | 2016 |
|
RU2681094C2 |
ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ (ВАРИАНТЫ) | 2017 |
|
RU2653748C1 |
Способ производства листового проката толщиной 8-50 мм из хладостойкой высокопрочной высокотвердой стали | 2023 |
|
RU2808637C1 |
Способ производства листового проката из хладостойкой стали | 2022 |
|
RU2792917C1 |
ХЛАДОСТОЙКАЯ ARC-СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ | 2012 |
|
RU2507296C1 |
Способ производства листов толщиной 2-20 мм из высокопрочной износостойкой стали (варианты) | 2020 |
|
RU2765047C1 |
Способ производства хладостойкого листового проката с твердостью 450-570 HBW | 2023 |
|
RU2809017C1 |
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ ARC-СТАЛЬ | 2012 |
|
RU2507295C1 |
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ СТАЛЬ | 2014 |
|
RU2562734C1 |
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОГО ХЛАДОСТОЙКОГО ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2018 |
|
RU2674797C1 |
Изобретение относится к области металлургии, а именно к производству листового проката в толщинах до 50 мм из высокопрочной свариваемой хладостойкой стали для изготовления тяжелонагруженной техники, подъемно-транспортного оборудования и ледостойких морских платформ, эксплуатирующихся в условиях низких температур. Сталь содержит в мас.%: углерод 0,08-0,10, кремний 0,30-0,40, марганец 0,65-0,75, хром 0,45-0,55, никель 1,65-1,75, медь 0,50-0,60, молибден 0,30-0,35, ниобий 0,02-0,04, цинк 0,0001-0,01, висмут 0,0001-0,005, сурьму 0,0001-0,005, кальций 0,0001-0,01, алюминий 0,02-0,05, азот 0,001-0,008, серу не более 0,005, фосфор не более 0,012, остальное - железо и неизбежные примеси. Величина углеродного эквивалента не превышает 0,53%. Изготавливаемые из стали изделия имеют квазиоднородную по толщине мелкодисперсную бейнитную или бейнитно-мартенситную структуру без структурно свободного феррита. Обеспечивается требуемый гарантированный уровень механических свойств. 2 н.п. ф-лы, 3 табл., 1 пр.
1. Высокопрочная свариваемая хладостойкая сталь, содержащая углерод, кремний, марганец, хром, никель, медь, ниобий, алюминий, азот, серу, фосфор, кальций, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит молибден, цинк, висмут и сурьму при следующем соотношении элементов, мас.%:
при этом величина углеродного эквивалента, рассчитываемого по формуле не превышает 0,53%.
2. Изделие, выполненное из высокопрочной свариваемой хладостойкой стали, отличающееся тем, что оно выполнено из стали по п. 1 и имеет квазиоднородную по толщине мелкодисперсную бейнитную или бейнитно-мартенситную структуру без структурно свободного феррита.
СПОСОБ ПРОИЗВОДСТВА НИЗКОЛЕГИРОВАННОГО ХЛАДОСТОЙКОГО СВАРИВАЕМОГО ЛИСТОВОГО ПРОКАТА ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ | 2014 |
|
RU2569619C1 |
СПОСОБ ПРОИЗВОДСТВА ПОЛОС ИЗ НИЗКОЛЕГИРОВАННОЙ СВАРИВАЕМОЙ СТАЛИ | 2014 |
|
RU2578618C1 |
СПОСОБ ПРОИЗВОДСТВА КОРРОЗИОННОСТОЙКОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2018 |
|
RU2681074C1 |
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ СТАЛЬ | 2014 |
|
RU2562734C1 |
ВЕТРОЭНЕРГЕТИЧЕСКАЯ И ГИДРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКИ И СПОСОБЫ ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ | 2013 |
|
RU2546368C2 |
Топка с несколькими решетками для твердого топлива | 1918 |
|
SU8A1 |
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
Авторы
Даты
2020-08-31—Публикация
2019-06-26—Подача