Изобретение относится к области аналитической химии, а именно - к области средств определения содержания кислорода в жидкости, и может быть использовано в различных областях исследования, где требуется определить содержание кислорода в органической жидкости.
Из уровня техники [авторское свидетельство SU 1712839 А1, опубл. 15.02.1992] известен способ определения концентрации кислорода в жидкостях и газах. Согласно известному способу осуществляют возбуждение молекул красителя в присутствии кислорода с последующей регистрацией люминесценции красителя и определением содержания кислорода расчетным путем, причем регистрируют замедленную флуоресценцию красителей, инициированную возбуждением триплетных молекул красителя в полосе электронного триплетного поглощения.
Недостатком известного способа следует признать его неприменимость к определению содержания молекулярного кислорода в органических жидкостях.
Также из уровня техники [авторское свидетельство SU 737357 А1, опубл. 30.05.1980] известен способ определения молекулярного кислорода в инертных газах и азоте. Согласно известному способу пропускают исследуемый газ над детектором, выполненному в виде пленки из полупроводникового материала, в частности оксида цинка, и измеряют электрическое сопротивление детектора, причем в исследуемый газ дополнительно вводят водород.
Недостатком известного способа следует признать ограниченную область применения - только определение содержания кислорода в инертных газах
Известен также способ определения растворенного в топливе кислорода, основанный на его выделении в присутствии низших спиртов, пропускании через растворы хлористого марганца и йодистого калия в щелочной среде с последующим титрованием йода раствором тиосульфата натрия в кислой среде [авторское свидетельство SU 854874 А1, опубл. 15.08.1981]. Данный источник информации принят в качестве ближайшего аналога (прототипа) разработанного технического решения.
Недостатком известного способа следует признать недостаточную точность определения, а также достаточно узкую область применения -только анализ моторных топлив.
Техническая задача, решаемая посредством реализации разработанного технического решения, состоит в разработке способа определения массовой концентрации молекулярного кислорода в органической жидкости.
Технический результат, достигаемый при реализации разработанного способа, состоит в повышении точности анализа при одновременном расширении области его применения.
Для достижения указанного технического результата предложено использовать разработанный способ определения массовой концентрации молекулярного кислорода в органической жидкости. Согласно разработанному способу в сосуде для проведения анализа смешивают щелочной раствор йодида щелочного металла или аммония и пробу анализируемой органической жидкости, для фиксации молекулярного кислорода вводят раствор растворимой соли марганца и перемешивают в темноте, далее пробу подкисляют и проводят йодометрическое титрование с интенсивным перемешиванием, при этом все операции проводят при изолировании пробы от кислорода воздуха, а массовую концентрацию кислорода в анализируемой пробе определяют по формуле:
χ=8.0⋅cT⋅VT⋅1000/(V-V1), где χ - массовая концентрация растворенного кислорода в анализируемой пробе, мг/дм3; cT - концентрация раствора титранта (использовали cT=0.005 моль-экв/дм3); VT - объем раствора титранта, израсходованный на титрование, см3; V - вместимость кислородной ячейки, см3; V1 - суммарный объем соли марганца и йодида щелочного металла или аммония, добавленных в ячейку при фиксации растворенного кислорода, см3; 8.0 - масса миллимоля-эквивалента кислорода, мг/ммоль-экв.
Вводить в сосуд для проведения анализа щелочной раствор йодида щелочного металла или аммония и пробу анализируемой органической жидкости можно в любой последовательности. Для фиксации молекулярного кислорода можно использовать любую водорастворимую соль марганца. Перемешивание в темноте смеси осуществляют в течение 10 минут, после мешалку выключают и оставляют ячейку на 5 минут для отстаивания осадка. Пробу (полученную смесь) подкисляют, предпочтительно до рН<1. Проводят йодометрическое титрование с использованием тиосульфата натрия в качестве титранта при интенсивном перемешивании, при этом все операции кроме титрования проводят при изолировании пробы от кислорода воздуха.
Для определения абсолютного значения содержания молекулярного кислорода предварительно проводят определения содержания в используемых реактивах молекулярного кислорода путем проведения «холостого опыта», т.е. повторения всех операций в тех же условиях, что и в разработанном способе, без использования пробы органической жидкости, при этом количество титранта, пошедшего на проведение «холостого опыта» вычитают из количества титранта, израсходованного на титрование пробы.
Предпочтительно анализируемую пробу и остальные реагенты помещают в ячейку, представляющую собой герметично закрываемый полимерный стакан, снабженный средствами ввода и вывода жидкости и якорем магнитной мешалки.
Йодометрическое титрование проводят в потенциометрическом режиме с использованием в качестве рабочего электрода платинового электрода, в качестве электрода сравнения - хлорсеребряного электрода для неводных сред. Электролитический ключ, предпочтительно, выполнен в виде шлифового соединения.
Способ осуществляют следующим образом.
Способ реализовывали с использованием титратора «Титрион» (ООО "Эконикс-Эксперт", РФ) с потенциометрической индикаторной системой с использованием ячейки, состоящей из полипропиленового стакана с герметично закрывающейся крышкой. Ячейка снабжена системой продувки инертным газом, ввода и вывода жидкости и якорем магнитной мешалки. При реализации способа ячейку полностью заполняют керосином, точный объем пробы определяют гравиметрически. Далее ввели пипеткой 1 см3 щелочного раствора йодида калия с содержанием йодида калия (15% в 50% щелочи) и ячейку поместили в термостат. После приведения к заданной температуре (20°С), провели фиксацию кислорода путем ввода 1 см3 раствора сульфата марганца при содержании Mn+2 моль/дм3. Ячейку поместили на магнитную мешалку, и произвели перемешивание в течение 10 минут в темном месте. Далее мешалку отключили, и осадок в ячейке отстаивали 5 минут. По истечении времени в ячейку ввели 5 см3 раствора соляной кислоты (раствор 2:1), и после кратковременного перемешивания содержимое перенесли в стакан для титрования автоматического титратора «Титрион». Йодометрическое титрование проводили с использованием автоматического титратора «Титрион» (ООО "Эконикс-Эксперт", РФ). В качестве рабочего электрода использовали платиновый электрод ЭРП-103, в качестве электрода сравнения - хлоридсеребряный электрод для неводных сред ЭСН-1 на базе стандартного электрода ЭВЛ-1М4. Использованные реактивы имели квалификацию Х.Ч. и ОС.Ч., их применяли без дополнительной очистки. Для приготовления растворов использовали дистиллированную вода по ГОСТ 6709-72. В качестве объекта исследования использовали авиакеросин марки ТС-1 по ГОСТ 10227-86. Титрование проводили стандартным раствором тиосульфата натрия. Обязательным условием получения достоверных результатов является интенсивное турбулентное перемешивание гетерогенной системы. В ходе титрования керосиновый слой, изначально окрашенный в темно-оранжевый цвет, обесцвечивается, кривая титрования имеет типичный S-образный вид.
Для проведения холостого опыта ячейку продували азотом в течение 30 минут, после чего проводили определение содержания кислорода в соответствие с процедурой, описанной выше.
Массовую концентрацию кислорода в анализируемой пробе находили по формуле:
где χ - массовая концентрация растворенного кислорода в анализируемой пробе, мг/дм3; cT - концентрация раствора тиосульфата натрия (использовали cT=0.005 моль-экв/дм3); VT - объем раствора тиосульфата натрия, израсходованный на титрование, см3; V - вместимость ячейки, см3; V1 - суммарный объем сульфата марганца и йодида калия, добавленных в ячейку при фиксации растворенного кислорода, см3; 8.0 - масса миллимоля-эквивалента кислорода, мг/ммоль-экв. Объем пробы при этом находили с учетом плотности керосина марки ТС-1. Для титрования использовали cT=0.005 моль-экв/дм3.
Использование разработанного способа позволяет повысить точность анализа относительно способа, известного из ближайшего аналога [авторское свидетельство SU 854874 А1, опубл. 15.08.1981], примерно на 20%, а также сократить число производимых манипуляций (операций).
Разработанный способ может быть применен к анализу любых органических жидкостей, не вступающих в химическое взаимодействие с используемыми реактивами.
название | год | авторы | номер документа |
---|---|---|---|
Способ оперативной оценки качества винодельческой продукции | 2016 |
|
RU2631489C1 |
СПОСОБ ИДЕНТИФИКАЦИИ ПОДЛИННОСТИ ВИНА | 2008 |
|
RU2384841C1 |
Способ получения экспериментальных данных для определения гидрокарбонат-ионов в минеральных водах методами кондуктометрического и потенциометрического титрования | 2018 |
|
RU2689404C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ НИТРОКСИЛЬНОЙ ГРУППЫ В РАСТВОРЕ | 2006 |
|
RU2308717C1 |
Способ получения экспериментальных данных для определения гидрокарбонат-ионов в минеральных водах методами потенциометрического и кислотно-основного титрования | 2016 |
|
RU2631618C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ НИТРОКСИЛЬНЫХ РАДИКАЛОВ В СЫРЬЕВЫХ ПОТОКАХ НЕПРЕДЕЛЬНЫХ МОНОМЕРОВ | 2017 |
|
RU2658048C1 |
СПОСОБ РАЗДЕЛЬНОГО ОПРЕДЕЛЕНИЯ МОНОАМИНОБЕНЗОЙНЫХ КИСЛОТ В ВОДЕ | 2002 |
|
RU2212655C1 |
СПОСОБ СПЕКТРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ДИОКСИДА ХЛОРА И ХЛОРИТ-ИОНА В ПИТЬЕВОЙ ВОДЕ | 2012 |
|
RU2495404C1 |
Способ определения муравьиной щавелевой и фосфорной кислот | 1988 |
|
SU1658088A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ 4-АМИНОБЕНЗОЙНОЙ КИСЛОТЫ В ВОДНЫХ РАСТВОРАХ | 2003 |
|
RU2243553C1 |
Изобретение относится к области аналитической химии, а именно - к области средств определения содержания кислорода в жидкости, и может быть использовано в различных областях исследования, где требуется определить содержание кислорода в органической жидкости. В сосуде для проведения анализа смешивают щелочной раствор йодида щелочного металла или аммония и пробу анализируемой органической жидкости. Для фиксации молекулярного кислорода вводят раствор растворимой соли марганца и перемешивают в темноте. Пробу подкисляют и проводят йодометрическое титрование с интенсивным перемешиванием, при этом все операции проводят при изолировании пробы от кислорода воздуха, а массовую концентрацию кислорода в анализируемой пробе определяют расчетным путем. Технический результат - повышение точности анализа при одновременном расширении области применения его. 3 з.п. ф-лы.
1. Способ определения массовой концентрации молекулярного кислорода в органической жидкости, отличающийся тем, что в сосуде для проведения анализа смешивают щелочной раствор йодида щелочного металла или аммония и пробу анализируемой органической жидкости, для фиксации молекулярного кислорода вводят раствор растворимой соли марганца и перемешивают в темноте, далее пробу подкисляют и проводят йодометрическое титрование с интенсивным перемешиванием, осуществляемое в потенциометрическом режиме с использованием в качестве рабочего электрода платинового электрода, в качестве электрода сравнения -хлорсеребряного электрода для неводных сред, при этом все операции проводят при изолировании пробы от кислорода воздуха, а массовую концентрацию кислорода в анализируемой пробе определяют по формуле:
χ=8.0⋅cT⋅VT⋅1000/(V-V1),
где χ - массовая концентрация растворенного кислорода в анализируемой пробе, мг/дм3; cT - концентрация раствора титранта (использовали cT=0.005 моль-экв/дм3); VT - объем раствора титранта, израсходованный на титрование, см3; V - вместимость кислородной ячейки, см3; V1 - суммарный объем соли марганца и йодида щелочного металла или аммония, добавленных в ячейку при фиксации растворенного кислорода, см3; 8.0 - масса миллимоля-эквивалента кислорода, мг/ммоль-экв.
2. Способ по п. 1, отличающийся тем, что предварительно проводят определения содержания молекулярного кислорода в используемых реактивах путем проведения «холостого опыта», при этом количество титранта, пошедшего на проведение «холостого опыта» вычитают из количества титранта, израсходованного на титрование пробы.
3. Способ по п. 1, отличающийся тем, что анализируемую пробу помещают в ячейку, представляющую собой герметично закрываемый полимерный стакан, снабженный средствами ввода и вывода жидкости и якорем магнитной мешалки.
4. Способ по п. 1, отличающийся тем, что электролитический ключ выполнен в виде шлифового соединения.
Способ определения растворенного в топливе кислорода | 1979 |
|
SU854874A1 |
Устройство для устранения мешающего действия зажигательной электрической системы двигателей внутреннего сгорания на радиоприем | 1922 |
|
SU52A1 |
МАССОВАЯ КОНЦЕНТРАЦИЯ РАСТВОРЕННОГО КИСЛОРОДА В ВОДАХ | |||
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ИОДОМЕТРИЧЕСКИМ МЕТОДОМ | |||
Москва, 2005 г., п.10.,11 | |||
Способ определения кислородсодержащих групп | 1977 |
|
SU661334A1 |
Способ количественного определения оксиранового кислорода в моно- и диметиленразделенных диэпоксисоединениях | 1978 |
|
SU765728A1 |
Способ кулонометрического титрования жидкостей электрогенерированным иодом и устройство для его осуществления | 1987 |
|
SU1578621A1 |
ВАЩЕНКОВ И.С., ВЕРЖИНСКАЯ С.В., ГРЕЧИШКИН О.С | |||
и др., " АНАЛИЗ ОРГАНИЧЕКИХ ПЕРЕКИСНЫХ СОЕДИННИЙ МЕТОДОМ ПОТЕНЦИОМЕТРИЧЕСКОГО ТИТРОВАНИЯ", УСПЕХИ ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИИ, ТОМ 28 | |||
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз | 1924 |
|
SU2014A1 |
Авторы
Даты
2019-04-23—Публикация
2018-01-30—Подача