Изобретение относится к области получения полиэфирсульфонов - простых ароматических эфиров на основе ароматических диолов и 4,4'-дихлордифенилсульфона, применяемых в качестве суперконструкционных полимерных материалов для 3D печати.
3D печать очень часто называют «Третьей промышленной революцией», так как становится реальным то, что ранее было доступно только в человеческих фантазиях. 3D печать начинает плотно входить в нашу жизнь, полимерные материалы, используемые для 3D печати, с каждым разом подвергаются модификации, совершенствуются их свойства. Перспективным полимерным материалом для данного вида печати представляются ароматические полиэфиры, в частности полиэфирсульфоны. К сожалению, полиэфирсульфоны обладают существенным недостатком -высокие температуры переработки. Традиционные способы переработки связаны с необходимостью применения высоких давлений (до 1400 кг/см2) и температур (до 350°С), соответствующего технологического оборудования и энергозатрат. Сильное межмолекулярное взаимодействие, обусловливающее низкую деформируемость и текучесть в области температур размягчения, а также узкие температурные интервалы переработки существенно затрудняют переработку полиэфирсульфонов в изделия [Ваниев М.А., Кирюхин Н.Н., Огрель A.M. Способ переработки полимера // Патент РФ №2058339, 1996]. Для переработки в условиях 3D печати полиэфирсульфон должен обладать высокой стабильностью свойств, что обеспечивается условиями проведения самого синтеза (температурой, природой растворителя, инертной атмосферой), степенью блокировки концевых реакционноспособных групп, а также полнотой отмывки самого полимера от всех технологических примесей, какими являются растворитель, выделяющий низкомолекулярной продукт - галогенид щелочного металла, непрореагировавшие мономеры - соответствующие бисфенолы (бисфеноляты) и галоидароматические сульфонильные соединения [Артемов С.В. Способ получения поли- и сополиэфирсульфонов // Патент РФ №2005737, 1999]. В связи с этим создание экономически эффективных технологий получения полиэфирсульфонов, обладающих улучшенными характеристиками является в настоящее время достаточно актуальной задачей.
Известен способ получения ароматических полиэфиров реакцией нуклеофильного замещения эквимолекулярных количеств полиароматического нуклеофильного реагента с дигалоидароматическим соединением в среде апротонного растворителя при нагревании в присутствии щелочного агента, в качестве последнего используют K2CO3 в сочетании с эквимолекулярной смесью Na2S⋅9H2O и Al2O3 или SiO2 в количестве от 0,5 до 5,0 мол. на 1,0 моль K2CO3 [Болотина Л.М., Чеботарев В.П. Способ получения ароматических полиэфиров // Патент РФ №2063404, 1996].
Недостатками способа являются длительность процесса, использование высоких температур.
Известен способ получения поли- и сополиэфирсульфонов взаимодействием в инертной атмосфере ароматических бисфенолов и галоидароматических сульфонов в среде растворителя в присутствии щелочного агента при нагревании с последующим измельчением и экстракцией целевого продукта, в качестве щелочного агента используют избыток по отношению к ароматическим бисфенолам смеси карбоната и гидрокарбоната калия, а в качестве растворителя - диметилсульфон, реакционную массу по окончании синтеза непосредственно или после разбавления растворителем до соотношения реакционная масса : растворитель 1:5, преимущественно до 1:2, измельчают до частиц размером 0,01-5,5 мм, преимущественно 0,5-1,0 мм, и промывают экстрагентом при перемешивании. Смесь карбоната и гидрокарбоната калия берут в избытке до 50 мол. %, преимущественно до 6 мол. % [Артемов С.В. Способ получения поли- и сополиэфирсульфонов // Патент РФ №2005737, 1999].
Недостатками способа являются необходимость новых технологических операций по измельчению твердого раствора полимера, длительной его отмывки от растворителя и солей, сложность регенерации твердого растворителя - диметилсульфона.
Известен способ получения полиэфирсульфонов [Ли Чжунчжи, Ван Цзи, Ван Цзе. Синтез полиэфирсульфоновой смолы // Патент КНР №103613752, 2013], заключающийся во взаимодействии бисфенола А и 4,4/-дихлордифенилсульфона в молярном соотношении 1:1, N-метилпирролидон в качестве растворителя, в качестве дегидратирующего агента - хлорбензол и NaOH - солеобразующего агента. Реакцию регулируют, блокируя с помощью газообразного хлорметана концевые фенолятные группы. Процесс в целом проводят в среде инертного газа, например, азота. Количество NaOH составляет 1.01-1.10 моль по отношению к бисфенолу А. Скорость реакции можно сократить за счет остановки реакции с помощью хлорметана.
Недостатками способа являются применение газообразного блокатора растущей цепи, что усложняет техническое оснащение процесса, требует новых систем и условий барботирования.
Наиболее близким к предлагаемому техническому решению является способ получения полиэфирсульфона, приводящий к повышению температуры стеклования и кислородного индекса. Задача достигается за счет того, что в способе получения ароматических полиэфиров реакцией нуклеофильного замещения в среде апротонного растворителя при нагревании в среде в присутствии щелочного агента, состоящего из K2CO3 с добавкой 0,5% мол. до 5,0% мол. эквимолярной смеси Na2S⋅9H2O и Al2O3 или SiO2 на 1,9 моль K2CO3, в качестве полиароматического нуклеофильного реагента применяют фенолфталеин или смесь дифенилолпропана и фенолфталеина при их мольном соотношении от 90:10 до 1:99, а в качестве дигалоидароматического соединения - 4,4-дихлордифенилсульфон (ДХДС) или его смесь с 4,4'-бис-(хлорфенилсульфонил) дифенилом при их мольном соотношении от 99:1 до 1:99. Регулирование молекулярной массы получаемых полимеров осуществляют добавлением к мономерам либо моногалоидных соединений ряда диарилсульфонов (например, монохлордифенилсульфона), либо избытком дигалоидароматического соединения. Кислородный индекс полученных полимеров составляет 26-41%, приведенная вязкость 0,47-0,53 дл/г (при концентрации 1 г в 100 мл растворителя), температура стеклования полученных образцов 196-290°С, время реакции 4-12 часов и более, температура реакции 165-175°С. [Ловков С.С., Чеботарев В.П. Способ получения ароматических полиэфиров // Патент РФ №2394848. 2010]
Недостатками данного способа являются относительно низкая вязкость растворов полученных образцов, следовательно, молекулярный вес, что может привести к ухудшению механических характеристик полиэфира. Осуществление синтеза в N,N-диметилацетамиде не позволяет повышать температуру среды выше 170-175°С, а при этой температуре многие бисфенолы, применяемые для получения полиэфирсульфонов не достаточно активны. Избыток дигалоидного соединения, используемый для регулирования молекулярной массы полимера может привести к преждевременному обрыву цепи и блокировать рост полимерной молекулы на ранних стадиях.
Задачей данного изобретения, совпадающей с техническим результатом, является создание полиэфирсульфонов заданной длины полимерной цепи, реакцией нуклеофильного замещения, с хорошими термическими и механическими характеристиками: высокие температура стеклования, значение показателя текучести расплава и кислородный индекс, стабильных в ходе высокотемпературной переработки.
Поставленная задача достигается путем получения полиэфирсульфонов реакцией нуклеофильного замещения полиароматических нуклеофильных агентов - 4,4/-диоксидифенил-2,2-дихлорэтилена, смеси диоксисоединений 0,0125-0,025 моль 4,4'-диоксидифенил-2,2-дихлорэтилена и 0,0125-0,025 моль 4,4'-диоксидифенилпропана, с дигалоидароматическим соединением - 0,025 моль 4,4'-дихлордифенилсульфоном в среде апротонного растворителя - 28 мл диметилсульфоксида и 25 мл толуола, в присутствии 0,06 моль щелочного агента карбоната калия и гексахлорбензола (ГХБ) в количестве от 0,0001-0,01 молей, причем ГХБ может выступать регулятором длины полимерной цепи за счет химического взаимодействия с концевыми фенолятными группами полимерной молекулы и при этом влиять на огнестойкость полученного полимера.
При малых добавках гексахлорбензола он выступает как один из мономеров и увеличивает молекулярный вес, а при больших количествах (0,01 и более моль) ГХБ обрывает полимерную цепь и служит ингибитором реакции поликонденсации.
Данное изобретение иллюстрируется следующими примерами.
Пример 1. В четырехгорлую колбу, снабженную мешалкой, ловушкой Дина-Старка, термометром и газоотводной трубкой, загружают 5,7073 г (0,025 моль) 4,4'-диоксидифенилпропана, 7,1792 г (0,025 моль) 4,4'-дихлордифенилсульфона, 7 г (0,06 моль) измельченного и высушенного карбоната калия, 28 мл диметилсульфоксида и 25 мл толуола, включают подачу газообразного азота. Температуру поднимают до 110°С и выдерживают при перемешивании в течение 45 минут. Далее поднимают температуру до 140°С, отгоняют воду в виде азеотропной смеси с толуолом. После полной отгонки воды температуру поднимают до 160°С, и выдерживают в течение 6 часов. Смесь охлаждают до комнатной температуры, разбавляют 25 мл диметилсульфоксида, отфильтровывают осадок хлористого натрия и осаждают полимер, прикапывая фильтрат в воду при интенсивном перемешивании. Осадок полиэфирсульфона отфильтровывают, промывают водой до отрицательной реакции на хлорид-ионы (проба нитратом серебра) и сушат при 90°С 2 часа, при 150°С - 3 часа, при 180°С - 4 часа.
Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,57 дл/г, кислородный индекс 25%, температура стеклования 190°С.
Полученный полимер имеет строение:
Пример 2. Способ осуществляют по примеру 1, только после выдерживания реакционной среды в течение 6 часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 0,5 часа.
Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,78 дл/г, кислородный индекс 36%, температура стеклования 230°С.
Полученный полимер имеет строение:
Примечание. В данном примере ГХБ активирует рост полимерной цепи.
Пример 3. Способ осуществляют по примеру 1, только после выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 0,5 часа.
Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,58 дл/г, кислородный индекс 33%, температура стеклования 210°С.
Примечание. В данном примере ГХБ активирует рост полимерной цепи.
Пример 4. Способ осуществляют по примеру 1, только после выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 2,85 г (0,01 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.
Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,28 дл/г, кислородный индекс 33%, температура стеклования 190°С.Образуются концевые группы:
Примечание. В данном примере ГХБ ингибирует рост полимерной цепи
Пример 5. Способ осуществляют по примеру 1, только в качестве диоксисоединения в реакционную смесь вводят 7,02852 г (0,025 моль) 4,4'-диоксидифенил-2,2-дихлорэтилена. После выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.
Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,82 дл/г, кислородный индекс 40%, температура стеклования 235°С.
Полученный полимер имеет строение
Примечание. В данном примере ГХБ активирует рост полимерной цепи.
Пример 6. Способ осуществляют по примеру 1, только в качестве диоксисоединения в реакционную смесь вводят смесь 3,51426 г (0,0125 моль) 4,4'-диоксидифенил-2,2-дихлорэтилена и 3,5896 г (0,0125 моль) 4,4'-диоксидифенилпропана. После выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.
Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,87 дл/г, кислородный индекс 41%, температура стеклования 230°С.
Полученный полимер имеет строение:
Примечание. В данном примере ГХБ активирует рост полимерной цепи
Пример 7. Способ осуществляют по примеру 1, только, в качестве диоксисоединения в реакционную смесь вводят 7,02852 г (0,025 моль) 4,4'-диоксидифенил-2,2-дихлорэтилена. После выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 2,85 г (0,01 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.
Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,42 дл/г, кислородный индекс 41%, температура стеклования 235°С.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения ароматических полиэфиров | 2018 |
|
RU2684327C1 |
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ ПОЛИЭФИРОВ | 2009 |
|
RU2394848C1 |
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ ПОЛИЭФИРОВ | 1994 |
|
RU2063404C1 |
Одностадийный способ получения ароматического полиэфира | 2018 |
|
RU2684328C1 |
Ароматические хлорсодержащие сополиэфирсульфонкетоны и способ их получения | 2019 |
|
RU2698714C1 |
Ароматические сополиэфирсульфонкетоны повышенной огнестойкости | 2019 |
|
RU2710365C1 |
Огнестойкие ароматические полиэфирсульфоны | 2018 |
|
RU2697085C1 |
Способ получения ароматических полисульфонов | 2023 |
|
RU2815713C1 |
Способ получения ароматических сополиариленэфирсульфонов | 2017 |
|
RU2669790C1 |
Способ получения ароматических полисульфонов | 2023 |
|
RU2815719C1 |
Изобретение относится к области получения полиэфирсульфонов, применяемых в качестве суперконструкционных полимерных материалов для 3D печати. Способ получения полиэфирсульфонов заключается в том, что проводят реакцию нуклеофильного замещения нуклеофильного агента дигалоидароматическим соединением в среде апротонного растворителя в присутствии щелочного агента карбоната калия в количестве 0,06 моль, и в реакционную смесь вводят гексахлорбензол в количестве 0,0001 и 0,01 моль. В качестве нуклеофильного агента используют диоксисоединение, выбранное из группы, включающей 4,4/-диоксидифенил-2,2-дихлорэтилен, либо смесь 0,0125-0,025 моль 4,4/-диоксидифенил-2,2-дихлорэтилена и 0,0125-0,025 моль 4,4/-диоксидифенилпропана. В качестве дигалоидароматического соединения используют 0,025 моль 4,4/-дихлордифенилсульфона. Изобретение позволяет получить полиэфирсульфоны заданной длины полимерной цепи с хорошими термическими и механическими характеристиками. 7 пр.
Способ получения полиэфирсульфонов реакцией нуклеофильного замещения полиароматических нуклеофильных агентов, отличающийся тем, что в качестве нуклеофильных агентов используются: 4,4/-диоксидифенил-2,2-дихлорэтилен, смеси диоксисоединений 0,0125-0,025 моль 4,4/-диоксидифенил-2,2-дихлорэтилена и 0,0125-0,025 моль 4,4/-диоксидифенилпропана с дигалоидароматическим соединением - 0,025 моль 4,4/-дихлордифенилсульфона в среде апротонного растворителя в присутствии 0,06 моль щелочного агента карбоната калия, и в реакции используется гексахлорбензол в количестве 0,0001 и 0,01 моль.
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ ПОЛИЭФИРОВ | 2009 |
|
RU2394848C1 |
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ ПОЛИЭФИРОВ | 1994 |
|
RU2063404C1 |
НЕНАСЫЩЕННЫЕ ОЛИГОЭФИРСУЛЬФОНЫ ДЛЯ ПОЛИКОНДЕНСАЦИИ | 2006 |
|
RU2318804C1 |
СУШИЛКА РАСПЫЛИТЕЛЬНАЯ | 2007 |
|
RU2328948C1 |
Авторы
Даты
2019-05-23—Публикация
2018-09-18—Подача