Изобретение относится к электрическим, а именно, керамическим электрическим нагревателям и может быть использовано в высокотемпературных печах, а также для исследования объектов на температурные воздействия в испытательных стендах.
Изобретение рассчитано на применение в вакууме, в среде инертных газов, а также в среде неинертных газов при температурах от 0 до 2200 градусов Цельсия.
Известен нагреватель с активной частью из диоксида циркония и токовыводными частями из оксида цинка, в которые вмонтирован металлический проводник из нихрома. Такие нагреватели термостойки, но разрушаются при нагреве переходной части свыше 1000 градусов Цельсия в результате испарения цинка [1].
Известен нагреватель из диоксида циркония, выполненный из пористого материала, выводные концы которого пропитаны хромитом лантана [2]. Такой нагреватель имеет малую устойчивость к деформации под нагрузкой при высоких температурах 1800 градусов Цельсия и высокую температуру токовыводных концов, что требует металлизации его благородными металлами (серебро, платина).
Известна галогенная лампа, используемая в качестве нагревателя (прототип). Галогенная лампа состоит из следующих деталей: колба из кварцевого стекла, тело накала, установленное внутри нее на токовводах и держателях, галогенированный водород (HJ, HBr, HCl) как составная часть газового наполнения, содержащий водород и галоген.
Галогенированный водород в процессе горения лампы диссоциирует на галоген и водород, при этом галоген осуществляет перенос испарившегося вольфрама обратно на спираль, а водород выполняет роль пассиватора: связывает химически активный галоген, благодаря чему обеспечивается нормируемая продолжительность горения [3].
Галогенная лампа накаливания содержит кварцевую колбу, тело накала, держатели, молибденовый токовый ввод, металлический цоколь цилиндрической формы с разрезными рантами, прижимное кольцо и втулку, гибкий провод с наконечником. Гибкий провод соединяют с молибденовым токовым вводом. Втулку вставляют во внутрь корпуса цоколя, при этом втулка своим основанием упирается в завальцованный край цоколя, и затем ее жестко фиксируют в цоколе. В процессе сборки лампы через втулку пропускают гибкий провод. Цоколь к кварцевой колбе прикрепляют асбестовой мастикой, на лампу плотно надевают цоколь и прижимным кольцом сжимают лепесткоообразный рант, после чего закрепляют к гибкому проводу наконечник [3].
Недостатком указанного нагревателя является то, что галогенная лампа накаливания не позволяет достичь температур выше 1300 градусов Цельсия из-за температуры плавления кварцевого стекла.
Технический результат предлагаемого изобретения заключается в повышении рабочих температур нагревателя.
Указанный технический результат достигается тем, что комбинированный трубчатый нагреватель содержит две оболочки из оксида магния с расположенной между ними оболочкой из стабилизированного диоксида циркония. Причем в оболочках из оксида магния коаксиально размещены прутки из вольфрама. В оболочке из диоксида циркония коаксиально и соосно с прутками из вольфрама размещен тросик из вольфрама, который служит стартовым нагревателем для оболочки из стабилизированного диоксида циркония [4]. При этом тросик из вольфрама с обеих сторон с помощью термокомпенсационных муфт соединен с прутками из вольфрама. Вместе с тем к оболочке из стабилизированного диоксида циркония жестко закреплены токоподводы. При этом на токоподводы, термокомпенсационные муфты, тросик из вольфрама и прутки из вольфрама нанесено плазменное напыление диоксида циркония. Кроме того, оболочки из оксида магния и оболочка из стабилизированного диоксида циркония соединены прессованием, причем полость между оболочками из оксида магния, оболочкой из стабилизированного диоксида циркония и тросиком из вольфрама, термокомпенсационными муфтами, прутками из вольфрама, токоподводами заполнена изолирующим наполнителем из оксида магния. При этом оболочки из оксида магния, оболочка из стабилизированного диоксида циркония и наполнитель из оксида магния спечены в единый моноблок.
Существует вариант, в котором оболочки из оксида магния и оболочка из стабилизированного диоксида циркония имеют трубчатую форму.
Существует вариант, в котором на внутреннюю поверхность оболочки из стабилизированного диоксида циркония нанесено плазменное напыление диоксида циркония.
Комбинированный трубчатый нагреватель поделен на 3 зоны: холодные А1 и А3, содержащие 2 оболочки из оксида магния, и горячую А2. Соотношение зон и их размеры определяются согласно габаритам установки, в которых будет использоваться данный нагреватель. Прутки из вольфрама, находящиеся в холодных зонах, являются токоподводами к тросику из вольфрама, расположенному в горячей зоне. За счет более частого шага навивки в центральной части тросика максимальная температура достигается именно там. Таким образом, тросик из вольфрама нагревается больше, чем прутки из вольфрама.
Между тросиком из вольфрама и прутками из вольфрама обеспечивается контакт с помощью термокомпенсационных муфт, выполненных из вольфрама, они обеспечивают более плавное, по сравнению со сварочным соединением тросика из вольфрама и прутка из вольфрама, изменение температуры разогрева на стыке холодной и горячей частей нагревателя [5].
На прутки из вольфрама, термокомпенсационные муфты и тросик из вольфрама нанесено плазменное напыление диоксида циркония [4] для защиты от взаимодействующего с кислородом вольфрама [6]. Плазменное напыление диоксида циркония также устойчиво при тепловых ударах, теплоизоляционное, химически неактивное [7]. Плазменное напыление чистого диоксида циркония отличается от стабилизированного оксидом иттрия диоксида циркония тем, что чистый диоксид циркония не проводит электрический ток [8].
Полость между оболочками из оксида магния, оболочкой из диоксида циркония, тросиком из вольфрама, прутками из вольфрама и термокомпенсационными муфтами заполнена наполнителем из оксида магния, поскольку имеет малую электропроводность [9]. Холодные зоны нагревателя также выполняются из оксида магния. Оксид магния также является электроизолятором тросика из вольфрама от оболочки из стабилизированного диоксида циркония.
На токоподводы к оболочке из стабилизированного диоксида нанесено плазменное напыление диоксида циркония. На внутреннюю поверхность оболочки из диоксида циркония также нанесено плазменное напыление диоксида циркония во избежание тепловых ударов и для дополнительной экранировки.
Известно, что темп нагрева нагревателей из диоксида циркония составляет не более 4-6 градусов в минуту [10].
Для исключения разрушения, сохранения целостности и, как следствие, надежности работы нагревательного элемента можно обеспечить равномерность нагрева активной части из вольфрама и, соответственно, активной части из диоксида циркония. Этого можно достичь с помощью исполнительного устройства подчиненного командам ПИД [11] (программируемый интегрально дифференциальный) регулятора, запрограммированного согласно характеристикам используемых материалов. Контроллер и программатор могут служить для контроля подачи напряжения на предлагаемый нагреватель.
На фиг. 1 изображен общий вид комбинированного трубчатого нагревателя; на фиг. 2 изображен вид вольфрамового прутка и тросика из вольфрама, соединенного термокомпенсационной муфтой (вид Б); на фиг. 3 дан вид внутреннего строения нагревателя в горячей зоне А2 (вид В); на фиг. 4 изображено сечение Г-Г комбинированного трубчатого нагревателя.
Сущность изобретения поясняется рисунком фиг. 1, фиг. 2, фиг. 3, фиг. 4, где: 1 - тросик из вольфрама; 2 - термокомпенсационная муфта; 3 - пруток из вольфрама; 4 - плазменное напыление диоксида циркония; 5 - оболочка из стабилизированного диоксида циркония; 6 - наполнитель из оксида магния; 7 - токоподводы; А1, А3 - холодные зоны; А2 - горячая зона.
Комбинированный трубчатый нагреватель состоит из 3 зон, имеющих форму трубки: холодных А1 и А3, содержащих оболочки из оксида магния, и горячей А2, в которой расположен тросик из вольфрама 1, соединенный с помощью термокомпенсационной муфты 2 с прутками из вольфрама 3, находящимися в холодных зонах А1 и А3 соответственно, на внешнюю поверхность которых нанесено плазменное напыление диоксида циркония 4, в горячей зоне также расположена оболочка из стабилизированного диоксида циркония 5, на внутреннюю поверхность которой также нанесено плазменное напыление диоксида циркония 4, изолированная от тросика из вольфрама 1 наполнителем из оксида магния 6, к оболочке из стабилизированного диоксида циркония подведены токоподводы 7, проходящие через холодные зоны A1 и А3, жестко закрепленные в зоне А2.
Функционирование комбинированного трубчатого нагревателя происходит в следующей последовательности. В качестве стартового нагревателя используется тросик из вольфрама 1, соединенный с помощью термокомпенсационной муфты 2, обеспечивающей более плавное по сравнению со сварочным соединением изменение температуры на стыке холодных зон A1, А3 и горячей А2 с прутками из вольфрама 3, на которые подается напряжение (электропитание), в результате подачи напряжения на тросике из вольфрама 1 достигается нагрев до 1000-1200 градусов Цельсия. На внешние поверхности тросика из вольфрама 1, термокомпенсационных муфт 2 и прутков из вольфрама 3 нанесено плазменное напыление диоксида циркония для защиты окисляющегося в неинертной среде вольфрама. После достижения температуры, при которой диоксид циркония становится электропроводным, на оболочку из стабилизированного диоксида циркония 5, изолированную от вольфрама с помощью наполнителя из оксида магния 6, подается напряжение с помощью токоподводов 7, проходящих сквозь холодные зоны А1 и А3, жестко закрепленные в зоне А2. На внутреннюю поверхность оболочки из стабилизированного диоксида циркония нанесено плазменное напыление диоксида циркония 4 для дополнительной защиты от взаимодействия с неинертной средой и экранировки. В результате протекания электрического тока через оболочку из стабилизированного диоксида циркония 5 осуществляется нагрев оболочки из стабилизированного диоксида циркония от температуры 1000 градусов Цельсия до 2200 градусов Цельсия.
Заявляемый электрический нагревательный элемент может быть изготовлен по технологии порошковой металлургии и представлять собой многослойную структуру из проводящего металлического, изолирующего стеклокерамического, керамического слоев, спрессованных и спеченных в единый моноблок. Для фиксации наполнителя оксида магния внутри комбинированного трубчатого нагревателя могут использоваться заглушки из твердого оксида магния с торцов комбинированного трубчатого нагревателя с отверстиями для токоподводов и прутков из вольфрама.
Цоколевка и крепления токоподводов выбираются согласно требованиям по эксплуатации нагревателя.
Предлагаемый комбинированный трубчатый нагреватель имеет ряд
преимуществ перед известными:
- работа при температурах до 2200 градусов Цельсия;
- работа в условиях инертной среды.
Нагрев до 2200 градусов Цельсия достигается благодаря комбинированному нагреву. Стартовый нагрев оболочки из стабилизированного диоксида циркония осуществляется путем пропускания тока через прутки из вольфрама, закрепленные к тросику из вольфрама с помощью термокомпенсационных муфт. После достижения температуры, при которой оболочка из диоксида циркония становится электропроводной, электропитание подается к токоподводам, жестко закрепленным к оболочке из стабилизированного диоксида циркония. Работа при температурах до 2200 градусов Цельсия в неинертной и инертной средах обеспечивается тем, что оболочка из стабилизированного диоксида циркония и оболочки из оксида магния не взаимодействуют с агрессивной газовой средой. Источники информации
1. Патент РФ №2568671 «Электрический нагреватель».
2. Патент РФ №1525951 «Способ изготовления электрического нагревателя из хромита лантана».
3. Патент РФ №2055417 «Галогенная лампа накаливания и способ ее изготовления».
4. Рутман Д.С., Топоров Ю.С., Плинер С.Ю. и др. / Высокоогнеупорные материалы из диоксида циркония. Раздел ГРНТИ: Металлургическая теплотехника. М.: «Металлургия». 1985. С. 101-111, С. 111-115.
5. Электрические аппараты: Учебник для техникумов. Четвертое издание, переработанное и дополненное / Родштейн Л.А. / Ленинград: Энергоатомиздат.Ленинградское отделение. 1989. С. 44.
6. Зеликман А.Н., Никитина Л.С. Вольфрам. Изд-во: Металлургия. 1978. С. 17-25.
7. Плазменное напыление диоксида циркония [Электронный ресурс]. Режим доступа: interplasma.ru/pn/materialy-pn.
8. О механизме ионной проводимости в стабилизированном кубическом диоксиде циркония [Электронный ресурс]. Режим доступа: https://journals.ioffe.ru/articles/viewPDF/4153.
9. Справочник химика [Электронный ресурс]. Режим доступа: chem21. info/info/1167913.
10. Материалы для электротермических установок [Электронный ресурс]. Режим доступа: www.pandia.ru/399707/.
11. ПИД-регуляторы: принципы построения и модификации [Электронный ресурс]. Режим доступа: https://www.cta.ru/cms/f/342946.pdf.
название | год | авторы | номер документа |
---|---|---|---|
ВЫСОКОТЕМПЕРАТУРНАЯ ЭЛЕКТРОХИМИЧЕСКАЯ ЯЧЕЙКА-СЕНСОР И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2010 |
|
RU2433394C1 |
КОМБИНИРОВАННОЕ ЗАЩИТНОЕ ПОКРЫТИЕ | 2021 |
|
RU2763953C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕНТАЛЬНОГО ИМПЛАНТАТА | 2022 |
|
RU2798985C1 |
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ | 2022 |
|
RU2780616C1 |
ИЗДЕЛИЕ, ПОДВЕРГАЕМОЕ ВОЗДЕЙСТВИЮ ГОРЯЧЕГО АГРЕССИВНОГО ГАЗА, В ЧАСТНОСТИ, ДЕТАЛЬ ГАЗОВОЙ ТУРБИНЫ (ВАРИАНТЫ) И СПОСОБ ИЗГОТОВЛЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО СЛОЯ ДЛЯ ИЗДЕЛИЯ | 1998 |
|
RU2218447C2 |
СПОСОБ ВЛИЯНИЯ НА СВОЙСТВА ЧУГУНА | 2008 |
|
RU2444729C2 |
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ | 2013 |
|
RU2521780C1 |
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ | 2010 |
|
RU2425906C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННОСТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ | 2012 |
|
RU2499078C1 |
Электродная стенка магнитогидродинамического генератора | 1989 |
|
SU1698941A1 |
Изобретение относится к электрическим нагревателям и может быть использовано в тепловых стендах для наземных испытаний космических аппаратов (КА) в условиях высоких температур. Комбинированный трубчатый нагреватель содержит две оболочки из оксида магния с расположенной между ними оболочкой из стабилизированного диоксида циркония. Причем в оболочках из оксида магния коаксиально размещены прутки из вольфрама. Кроме того, в оболочке из диоксида циркония коаксиально и соосно с прутками из вольфрама размещен тросик из вольфрама, который служит стартовым нагревателем для оболочки из стабилизированного диоксида циркония. При этом тросик из вольфрама с обеих сторон с помощью термокомпенсационных муфт соединен с прутками из вольфрама. Технический результат предлагаемого изобретения заключается в повышении рабочих температур нагревателя. 2 з.п. ф-лы, 4 ил.
1. Комбинированный трубчатый нагреватель, отличающийся тем, что содержит две оболочки из оксида магния с расположенной между ними оболочкой из стабилизированного диоксида циркония, причем в оболочках из оксида магния коаксиально размещены прутки из вольфрама, а в оболочке из диоксида циркония коаксиально и соосно с прутками из вольфрама размещен тросик из вольфрама, который служит стартовым нагревателем для оболочки из стабилизированного диоксида циркония, при этом тросик из вольфрама с обеих сторон с помощью термокомпенсационных муфт соединен с прутками из вольфрама, вместе с тем к оболочке из стабилизированного диоксида циркония жестко закреплены токоподводы, при этом на токоподводы, термокомпенсационные муфты, тросик из вольфрама и прутки из вольфрама нанесено плазменное напыление диоксида циркония, кроме того, оболочки из оксида магния и оболочка из стабилизированного диоксида циркония соединены прессованием, причем полость между оболочками из оксида магния оболочкой из стабилизированного диоксида циркония и тросиком из вольфрама, термокомпенсационными муфтами, прутками из вольфрама, токоподводами заполнена наполнителем из оксида магния, при этом оболочки из оксида магния, оболочка из стабилизированного диоксида циркония и наполнитель из оксида магния спечены в единый моноблок.
2. Комбинированный трубчатый нагреватель по п. 1, отличающийся тем, что оболочки из оксида магния и оболочка из стабилизированного диоксида циркония имеют трубчатую форму.
3. Комбинированный трубчатый нагреватель по п. 1, отличающийся тем, что на внутреннюю поверхность оболочки из стабилизированного диоксида циркония нанесено плазменное напыление диоксида циркония.
ЭЛЕКТРИЧЕСКИЙ НАГРЕВАТЕЛЬ | 2014 |
|
RU2568671C1 |
Способ изготовления электрического нагревателя из хромита лантана | 1983 |
|
SU1525951A1 |
US 5247158 A1, 21.09.1993 | |||
US 4626665 A, 02.12.1986. |
Авторы
Даты
2019-08-05—Публикация
2018-12-27—Подача