Способ лазерно-дуговой сварки труб Российский патент 2019 года по МПК B23K26/348 

Описание патента на изобретение RU2697532C1

Изобретение относится к производству труб большого диаметра и может быть использовано в отраслях промышленности, например, судостроительной.

Известен способ сварки стыков прямошовных сварных труб из стали повышенной прочности из патента RU 2412032, при котором лазерно-дуговую сварку ведут в импульсно-периодическом режиме, причем частота пульсаций дуги совпадает с частотой лазерных импульсов. Способ способствует организации капельного переноса присадочного материала – плавящегося электрода в сварочную ванну. Это позволяет получить мелкодисперсную структуру и повысить механические свойства металла шва. Сочетание импульсных режимов дуги и лазера расширяет технологические возможности сварки.

Однако даже при одинаковой частоте пульсаций расположение импульсов параметров сварочной дуги и лазера относительно друг друга во времени в течение каждого периода носит случайный, непредсказуемый характер. Это означает отсутствие стабильности процесса сварки и нестабильный характер переноса металла в сварочную ванну. В сварке плавящимся электродом перенос металла электрода осуществляется двумя процессами: в диапазонах короткой и горячей сварочной дуги. В процессе короткой сварочной дуги металл переносится крупными каплями в связи с периодическими короткими замыканиям. Сварка получается во всех пространственных положениях. Однако в этом случае проблемами являются образование брызг, непровары, валики невыгодной формы. В процессе горячей сварочной дуги металл переносится без коротких замыканий (капельный, мелкокапельный, струйный перенос) маленькими каплями, отделяющимися от присадочной проволоки усилиями значительно выше земного притяжения. Силы эти носят электромагнитный характер и зависят от величины тока, протекающего через сварочный электрод, а под термином «горячая сварочная дуга» имеется в виду непотухающая сварочная дуга (во время короткого замыкания сварочная дуга гаснет).

При импульсной сварке во время электроимпульса металл переносится от присадочной проволоки в сварочную ванну в форме небольших капель. Во время низкого тока паузы металл не переносится, но остается расплавленным. Чтобы хорошо владеть процессами импульсной сварки, необходимо регулировать пять разных сварочных параметров: ток паузы, ток импульса, время импульса, частоту импульса, скорость подачи присадочной проволоки.

Из сказанного выше следует, что наиболее эффективным в достижении мелкокапельного переноса и исключении больших капель, замыкающих дуговой промежуток, что приводит к короткому замыканию, является процесс импульсной сварки, тем более, что он поддается управлению и позволяет за счет этого регулировать размеры капель. (Справочник - Сварка. Резка. Контроль. Под редакцией Алешина Н.П., Чернышева Г.Г. М. Машиностроение. 2004. с. 271). Это в полной мере относится и к параметрам лазера тоже.

Технической проблемой, на решение которой направлено заявляемое изобретение, является недостаточная стабильность импульсной гибридной лазерно-дуговой сварки.

Техническим результатом предлагаемого изобретения является повышение стабильности процесса сварки, мелкокапельного переноса металла и повышение механических свойств шва.

Заявляемый технический результат достигается за счёт того, что в способе лазерно-дуговой сварки труб сварку трубной заготовки осуществляют гибридной лазерно-дуговой сваркой в импульсно-периодическом режиме, при котором выбирают одинаковую частоту пульсаций электрической дуги и лазерного излучения, колебания тока электрической дуги и мощности лазерного излучения синхронизируют во времени, обеспечивая совпадение передних фронтов импульсов электрической дуги и мощности лазерного излучения или опережение импульса лазерного излучения.

В обычном режиме лазерно-дуговой сварки лазерное излучение непрерывно и постоянно ионизирует дуговой промежуток (делает его токопроводящим), за счет чего параметры электродуговой сварки становятся гораздо стабильнее, чем при отсутствии излучения.

Но введение импульсного режима одновременно и в лазерное излучение, и в электрическую дугу даже с одинаковой частотой пульсаций, но без их синхронизации, может не только не улучшить сварку, но и дестабилизировать ее, нарушив процесс горения сварочной дуги, что безусловно скажется на качестве шва. В заявляемом изобретении за счёт синхронизации тока электрической дуги и мощности лазерного излучения обеспечивается повышение стабильности процесса сварки и мелкокапельного переноса металла.

Повышение механических свойств шва даже при отсутствии непроваров за счет исключения коротких замыканий сварочной дуги – это повышение прочности шва. Кроме того, при мелкокапельном переносе улучшается структура металла и стабильность геометрии шва.

Способ поясняется с помощью фиг. 1-2, на которых показаны:

Фиг. 1 – диаграммы тока ток электрической дуги и мощность лазерного излучения в несинхронизированном режиме;

Фиг. 2 – диаграммы тока ток электрической дуги и мощность лазерного излучения в синхронизированном режиме.

На фиг. 1-2 позициями 1-2 обозначены:

1 – ток электрической дуги;

2 – мощность лазерного излучения.

Способ осуществляют следующим образом.

Трубную заготовку размещают в сборочно-сварочном стане и осуществляют гибридную лазерно-дуговую сварку в импульсно-периодическом режиме. Для сварки выбирают одинаковую частоту пульсаций электрической дуги и лазерного излучения. Колебания тока электрической дуги и мощности лазерного излучения синхронизируют во времени, обеспечивая совпадение передних фронтов импульсов электрической дуги и мощности лазерного излучения или опережение импульса лазерного излучения.

На фигурах 1-2 показаны диаграммы тока электрической дуги 1 и мощности лазерного излучения 2. Частота колебаний обоих параметров одинакова, но на фиг. 1 они не синхронизированы, и импульсы тока электрической дуги и мощности лазера могут быть сдвинуты относительно друг друга непредсказуемо. Для стабилизации горения электрической дуги, а это особенно важно, когда ток электрической дуги в паузе между импульсами небольшой или равен нулю, необходимо совпадение передних фронтов импульсов обоих параметров или некоторое опережение импульса лазерного излучения при любой по отдельности их длительности. Опережение лазерного излучения максимально допустимо на 200 мкс (0,0002 с), чего вполне достаточно для ионизации дугового промежутка.

На фиг. 2 импульс мощности лазера после включения достигает максимальной величины с затяжкой во времени (форма может быть и трапецеидальной), потому что при резком увеличении мощности излучения происходит разбрызгивание сварочной ванны, которое ухудшает геометрию шва и может повредить оптические элементы сварочной головки. Отношения максимальных значений импульсов к минимальным, скважности импульсов (отношения длительности импульсов к их периоду) – это тоже показатели формы.

Для реализации заявляемого способа используют единую систему управления сваркой. Системы управления технологическими процессами, в т.ч. и различными видами сварки, строятся с помощью микропроцессорной техники на базе универсальных программируемых контроллеров. Один и тот же контроллер, но с разными управляющими программами, может управлять совершенно разными технологическими агрегатами, причем одновременно. Синхронизация в этом случае осуществляется просто – в одном из сегментов программы организуется единый генератор импульсов, определяющий частоту колебаний обоих параметров, по переднему фронту которого одновременно выдаются соответствующие задания на мощность лазера и ток электрической дуги, которые в зависимости от принятых форм этих величин меняются в течение периода частоты Т.

Функциональные схемы в подобных системах выглядят почти одинаково – устройство задания параметров и визуализации процесса, как правило, персональной электронной вычислительной машины с сенсорным монитором, которое осуществляет обмен данными с управляющим контроллером, имеющим соответствующий набор элементов для связи с объектами управления.

Для реализации заявляемого способа используют следующие параметры:

частота импульсов – 100-900 Гц;

максимальный ток дуги – (300-800) А;

мощность лазера – 1-20 кВт;

скважность импульсов – от 0,2 до 0,7.

Эти параметры подбираются экспериментально и зависят от толщины свариваемой детали, скорости сварки и от многих других факторов.

Похожие патенты RU2697532C1

название год авторы номер документа
Способ гибридной лазерно-дуговой сварки 2017
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
RU2640105C1
СПОСОБ ЛАЗЕРНО-ДУГОВОЙ СВАРКИ 2018
  • Романцов Игорь Александрович
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Самохвалов Борис Михайлович
RU2710090C1
Способ гибридной лазерно-дуговой сварки продольного шва трубы 2017
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
RU2637035C1
Способ сварки сформованной трубной заготовки с индукционным подогревом 2017
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2660540C1
СПОСОБ ГИБРИДНОЙ ЛАЗЕРНО-ДУГОВОЙ СВАРКИ СТАЛЬНЫХ ТОЛСТОСТЕННЫХ КОНСТРУКЦИЙ 2018
  • Никитин Кирилл Николаевич
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2679858C1
СПОСОБ ЗАЩИТЫ СТЕКЛА ЛАЗЕРНОЙ ОПТИЧЕСКОЙ ГОЛОВКИ ОТ БРЫЗГ В НАЧАЛЕ СВАРКИ 2018
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2686699C1
СПОСОБ СВАРКИ СТЫКОВ ПРЯМОШОВНЫХ СВАРНЫХ ТРУБ ИЗ СТАЛЕЙ ПОВЫШЕННОЙ ПРОЧНОСТИ 2009
  • Гринин Олег Иванович
  • Кузнецов Андрей Владимирович
  • Лопота Александр Витальевич
  • Певзнер Яков Борисович
  • Туричин Глеб Андреевич
  • Цибульский Игорь Александрович
RU2412032C1
СПОСОБ ГИБРИДНОЙ ЛАЗЕРНО-ДУГОВОЙ СВАРКИ ТОЛСТОСТЕННЫХ ТРУБ БОЛЬШОГО ДИАМЕТРА ИЗ ВЫСОКОПРОЧНЫХ МАРОК СТАЛИ 2018
  • Никитин Кирилл Николаевич
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Гизатуллин Антон Бильгуварович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2678110C1
Способ лазерной-дуговой сварки стальной сформованной трубной заготовки 2017
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Булыгин Алексей Александрович
RU2668641C1
Способ бездефектной гибридной лазерно-дуговой сварки толстостенных стыковых соединений 2018
  • Романцов Игорь Александрович
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
  • Мурзин Дмитрий Алексеевич
  • Мустафин Марат Равилевич
  • Булыгин Алексей Александрович
RU2697754C1

Иллюстрации к изобретению RU 2 697 532 C1

Реферат патента 2019 года Способ лазерно-дуговой сварки труб

Изобретение относится к производству труб большого диаметра и может быть использовано в отраслях промышленности, например судостроительной. В способе лазерно-дуговой сварки труб сварку трубной заготовки осуществляют гибридной лазерно-дуговой сваркой в импульсно-периодическом режиме, при котором выбирают одинаковую частоту пульсаций электрической дуги и лазерного излучения. Колебания тока электрической дуги и мощности лазерного излучения синхронизируют во времени, обеспечивая совпадение передних фронтов импульсов электрической дуги и мощности лазерного излучения или опережение импульса лазерного излучения. Опережение фронта импульса лазерного излучения обеспечивают не более чем на 200 мкс по отношению к фронту импульса электрической дуги. Частоту импульсов выбирают в диапазоне 100-900 Гц, ток дуги 300-800 А, мощность лазера 1-20 кВт, скважность импульсов 0,2-0,7. Техническим результатом предлагаемого изобретения является повышение стабильности процесса сварки, мелкокапельного переноса металла и повышение механических свойств шва. 5 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 697 532 C1

1. Способ лазерно-дуговой сварки труб, включающий гибридную лазерно-дуговую сварку трубной заготовки в импульсно-периодическом режиме, отличающийся тем, что гибридную лазерно-дуговую сварку осуществляют с одинаковой частотой пульсаций электрической дуги и лазерного излучения, при этом колебания тока электрической дуги и мощности лазерного излучения синхронизируют во времени с обеспечиванием совпадения передних фронтов импульсов электрической дуги и мощности лазерного излучения или опережения импульса лазерного излучения.

2. Способ по п.1, отличающийся тем, что опережение фронта импульса лазерного излучения обеспечивают не более чем на 200 мкс по отношению к фронту импульса электрической дуги.

3. Способ по п.1, отличающийся тем, что частоту импульсов выбирают 100-900 Гц.

4. Способ по п.1, отличающийся тем, что максимальный ток дуги выбирают 300-800 А.

5. Способ по п.1, отличающийся тем, что мощность лазера выбирают 1-20 кВт.

6. Способ по п.1, отличающийся тем, что скважность импульсов выбирают от 0,2 до 0,7.

Документы, цитированные в отчете о поиске Патент 2019 года RU2697532C1

СПОСОБ СВАРКИ СТЫКОВ ПРЯМОШОВНЫХ СВАРНЫХ ТРУБ ИЗ СТАЛЕЙ ПОВЫШЕННОЙ ПРОЧНОСТИ 2009
  • Гринин Олег Иванович
  • Кузнецов Андрей Владимирович
  • Лопота Александр Витальевич
  • Певзнер Яков Борисович
  • Туричин Глеб Андреевич
  • Цибульский Игорь Александрович
RU2412032C1
СПОСОБ ИМПУЛЬСНОЙ ЛАЗЕРНОЙ СВАРКИ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Каюков С.В.
  • Гусев А.А.
  • Самарцев Г.В.
  • Канавин А.П.
RU2120364C1
СПОСОБ ЭЛЕКТРОДУГОВОЙ СВАРКИ 0
SU187894A1
US 20180304393 A1, 25.10.2018
JP 2007283356 A, 01.11.2007.

RU 2 697 532 C1

Авторы

Романцов Игорь Александрович

Романцов Александр Игоревич

Федоров Михаил Александрович

Черняев Антон Александрович

Котлов Александр Олегович

Самохвалов Борис Михайлович

Даты

2019-08-15Публикация

2018-12-30Подача