СПОСОБ ФОРМИРОВАНИЯ ИДЕНТИФИКАЦИОННЫХ ПРИЗНАКОВ ДЛЯ ГРУППЫ ОБЪЕКТОВ Российский патент 2019 года по МПК H04L9/32 G06K1/12 

Описание патента на изобретение RU2700401C1

Изобретение относится к области вычислительной техники и может быть использовано в системах связи, вычислительных и информационных системах для индивидуальной идентификации внутри групп объектов.

Известен способ сжатия двоичных данных в виде структурированных информационных блоков (см. патент РФ №2497277, опубликованный 27.10.2013, авторы: Мартынов А.П., Николаев Д.Б.), в котором символы представлены битовыми последовательностями одинакового фиксированного размера. Для формирования идентификационного номера производят подсчет частоты повторяемости символов, затем для обозначения часто и редко встречающихся символов входного потока двоичных данных производят соответственно выработку более короткой и более длинной битовых последовательностей, которые объединяют в совокупную битовую последовательность переменного размера. При этом из совокупной битовой последовательности исключают битовые последовательности, соответствующие повторяющимся символам входного потока двоичных данных, что позволяет получать уникальные идентификационные номера. Способ позволяет проводить операции по формированию идентификационных номеров, используя малый объем памяти для реализации соответствующих преобразований.

Указанный способ является наиболее близким по технической сущности к заявляемому способу и поэтому выбран в качестве прототипа.

Недостатком указанного способа является сложность формирования индивидуальных идентификационных признаков внутри групп объектов с одновременной идентификацией самих групп, невозможность распараллеливания процессов формирования идентификационных признаков и ограниченное количество признаков идентификации, обусловленное фиксированной последовательностью входных данных.

Решаемой технической проблемой является создание способа формирования идентификационных признаков для группы объектов с расширенными функциональными возможностями.

Достигаемым техническим результатом является обеспечение одновременного формирования групповых и индивидуальных идентификационных признаков объектов, динамическое изменение значений идентификационных признаков при изменении входных управляющих последовательностей и многопоточное формирование идентификационных признаков.

Для достижения технического результата в способе формирования идентификационных признаков для группы объектов, заключающемся в том, что для их формирования используют входной поток данных, результатом формирования идентификационных признаков являются выходные битовые последовательности, новым является то, что идентификационный признак содержит поля групповой и индивидуальной идентификации, размер которых определяют заранее, формирование идентификационных признаков осуществляют с использованием набора квадратных параллельно расположенных матриц, каждая из которых содержит элементы, образующие столбцы и строки, каждому элементу присваивают индекс соответствующих ему номера строки и номера столбца, при этом элементы каждой строки и каждого столбца на каждой матрице соединяют между собой последовательно, каждый элемент первой матрицы со своим индексом последовательно соединяют с элементом такого же индекса последующих параллельных матриц, при этом элементы матриц являются случайными битовыми значениями, входной поток данных представляет собой числовые значения, состоящие из индекса строки, столбца и номера матрицы, при этом каждое числовое значение входного потока используют для выбора одной из матриц и одного из ее элементов, на выбранной матрице осуществляют перемещение выбранного элемента на место элемента первой матрицы, имеющего индекс строки и столбца равный единице, путем последовательного смещения других элементов, для получения выходных битовых последовательностей, являющихся идентификационными признаками для группы объектов, производят считывание элементов строк, столбцов на каждой матрице и элементов с одинаковым индексом на каждой из параллельно расположенных матриц, при этом из считанного множества битовых последовательностей выбирают количество последовательностей с одинаковыми значениями полей групповой идентификации и разными значениями полей индивидуальной идентификации, соответствующее количеству объектов в группе.

Указанная совокупность существенных признаков позволяет расширить функциональные возможности формирования идентификационных признаков для группы объектов за счет динамического изменения значений идентификационных признаков в процессе их формирования, обеспечения многопоточного формирования индивидуальных признаков одновременно для нескольких групп объектов и статистической обработки полученных идентификационных признаков для устранения совпадений.

На фиг. 1 представлен вид идентификационного признака объекта с полями для групповой и индивидуальной идентификации. На фиг. 2 представлен вид матриц, формирующих идентификационный признак объекта (толстыми линиями со стрелками показаны взаимосвязи элементов по строкам, тонкими линиями со стрелками - взаимосвязи по столбцам, дугообразными линиями со стрелками - взаимосвязи между матрицами). На фиг. 3 представлен алгоритм формирования идентификационных признаков объектов с использованием матриц и входного потока данных. На фиг. 4 представлен пример формирования идентификационных признаков для трех групп объектов с использованием четырех матриц 4×4 и входного потока данных со значениями: 2, 3, 1, 2, 3, 3, 1, 1, 3, 2, 3, 2.

Способ реализуется следующим образом.

Идентифицирующий признак (см. фиг. 1) включает в себя два поля: поле групповой идентификации, в котором находится значение, отвечающее за идентификацию группы объектов и одинаковое для всех объектов в группе, и поле индивидуальной идентификации, в котором находится значение, отвечающее за идентификацию конкретного объекта, это значение уникально для каждого объекта в группе. Длина поля групповой идентификации может меняться, например, в зависимости от режима функционирования объектов (идентификация, работа, добавление, исключение объектов в/из группы), количества групп и количества объектов в группах. При изменении длины поля групповой идентификации соответственно изменяется и длина поля индивидуальной идентификации. Суммарная длина полей групповой и индивидуальной идентификации зависит от размера используемых для формирования идентификатора матриц.

Матрицы (см. фиг. 2), участвующие в формировании идентификационных признаков, представлены в виде набора n параллельно расположенных квадратных матриц n×n, каждая из которых содержит элементы {xij}, образующие столбцы {xj}i и строки {xi}j, каждому элементу присваивают индекс соответствующих ему номера строки (i) и номера столбца (j). При этом элементы каждой строки {xi}j и каждого столбца {xj}i на каждой матрице {k} соединяют между собой последовательно, каждый элемент {xij} первой матрицы k1 со своим индексом (ij) последовательно соединяют с элементом {xij} такого же индекса (ij) последующих параллельных матриц k2…kn, при этом элементы матриц являются случайными битовыми значениями {0,1}.

Входной поток данных (см. фиг. 3) представляет собой числовые значения, состоящие из индекса строки, столбца и номера матрицы (ijk), при этом каждое числовое значение входного потока используют для выбора одной из матриц {k} и одного из ее элементов {xij}, на выбранной матрице {k} осуществляют перемещение выбранного элемента {xij} на место элемента первой матрицы {x11}, имеющего индекс строки и столбца равный единице, путем последовательного смещения других элементов.

Для получения выходных битовых последовательностей, являющихся идентификационными признаками для группы объектов, производят считывание элементов строк {xij}, столбцов {xji} на каждой матрице {k} и элементов с одинаковым индексом на каждой из параллельно расположенных матриц {xij}k, при этом из считанного множества битовых последовательностей выбирают количество последовательностей с одинаковыми значениями полей групповой идентификации и разными значениями полей индивидуальной идентификации, соответствующее количеству объектов в группе.

Рассмотрим пример формирования идентификационных признаков для трех групп из двух, трех и четырех объектов соответственно (см. фиг. 4) с применением четырех матриц размером 4×4. Длины полей групповой и индивидуальной идентификации выберем равными 2. Входной поток данных имеет значения: 2, 3, 1, 2, 3, 3, 1, 1, 3, 2, 3, 2. В соответствии со значениями входного потока, преобразования матриц происходит над элементами (2, 3, 1), (2, 3, 3), (1, 1, 3), (2, 3, 2). После формирования битовых последовательностей имеем следующее множество последовательностей:

Выбираем групповой идентификационный признак для первой группы 11, выделяем все последовательности, начинающиеся на 11: 1111, 1101, 1110, 1100. Повторяющиеся последовательности отбрасываем. Две первые последовательности дают индивидуальные признаки для двух объектов первой группы 11 и 01. Совокупные идентификационные признаки для объектов первой группы: 1111 и 1101. Для второй и третьей группы алгоритм формирования идентификационных признаков аналогичный. Выбираем групповой идентификационный признак для второй группы 10, выделяем все последовательности, начинающиеся на 10: 1010, 1000, 1011, 1001. Повторяющиеся последовательности отбрасываем. Три первые последовательности дают индивидуальные признаки для трех объектов второй группы 10, 00 и 11. Совокупные идентификационные признаки для объектов первой группы: 1010, 1000 и 1011. Выбираем групповой идентификационный признак для третьей группы 01, выделяем все последовательности, начинающиеся на 01: 0100, 0110, 0101, 0111. Повторяющиеся последовательности отбрасываем. Четыре последовательности дают индивидуальные признаки для четырех объектов третьей группы 00, 10, 01 и 11. Совокупные идентификационные признаки для объектов третьей группы: 0100, 0110, 0101, 0111.

Предложенный способ может быть реализован непосредственно в аппаратных средствах, в программном модуле, выполняемом посредством процессора, или в их комбинации.

Реализация данного способа позволяет расширить функциональные возможности за счет параллельного формирования уникальных идентифицирующих признаков объектов внутри групп, статистической обработки полученных идентификационных признаков для устранения совпадений, что позволяет создавать универсальные многофункциональные системы преобразования, подстраивающиеся под структуру и состав динамически изменяющихся управляемых объектов.

Программная и программно-аппаратная реализации данного способа подтвердили осуществимость и практическую ценность заявленного способа.

Похожие патенты RU2700401C1

название год авторы номер документа
СПОСОБ ДИНАМИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ДАННЫХ ПРИ ХРАНЕНИИ И ПЕРЕДАЧЕ 2019
  • Волков Константин Олегович
  • Мартынов Александр Петрович
  • Мартынова Инна Александровна
  • Николаев Дмитрий Борисович
  • Николаева Ирина Александровна
  • Фомченко Виктор Николаевич
RU2699589C1
СПОСОБ КОМПРЕССИИ МНОГОМЕРНЫХ ДАННЫХ ДЛЯ ХРАНЕНИЯ И ПОИСКА ИНФОРМАЦИИ В СИСТЕМЕ УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Мельников Вадим Митрофанович
  • Маркин Сергей Павлович
RU2417424C1
Способ формирования и структурирования электронной базы данных 2018
  • Морозов Алексей Викторович
RU2696295C1
Многофункциональное автоматизированное рабочее место оперативного контроля и тестирования радиоэлектронной аппаратуры 2023
  • Дрозд Олег Владимирович
  • Любухина Инга Александровна
  • Русских Полина Андреевна
RU2810642C1
СПОСОБЫ И УСТРОЙСТВО ОБЕСПЕЧЕНИЯ СИСТЕМЫ ПРОГНОЗИРОВАНИЯ ГРУППОВОЙ ТОРГОВЛИ 2008
  • Макгиан Томас
RU2510891C2
СПОСОБ АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ ПОВРЕЖДАЕМОСТИ ГЕОТЕКСТИЛЬНЫХ ПОЛОТЕН В ПРОЦЕССЕ ЭКСПЛУАТАЦИОННЫХ ИСПЫТАНИЙ 2015
  • Гойс Татьяна Олеговна
  • Матрохин Алексей Юрьевич
  • Грузинцева Наталья Александровна
  • Баженов Сергей Михайлович
  • Вахонина Светлана Алексеевна
  • Чистякова Наталья Эрнестовна
RU2593341C1
СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОЙ СКОРОСТИ ВОЗДУШНОГО ОБЪЕКТА В РЕЖИМЕ ХАОТИЧНОЙ ПОИМПУЛЬСНОЙ ПЕРЕСТРОЙКИ НЕСУЩЕЙ ЧАСТОТЫ ПРИ ОГРАНИЧЕННОМ КОЛИЧЕСТВЕ ИСПОЛЬЗУЕМЫХ ЧАСТОТ 2010
  • Майоров Дмитрий Александрович
  • Митрофанов Дмитрий Геннадьевич
  • Гаврикова Екатерина Александровна
  • Хрупало Дмитрий Александрович
  • Рахманов Алексей Евгеньевич
  • Степанова Лидия Васильевна
RU2427003C2
СПОСОБ ФОРМИРОВАНИЯ СТРУКТУРЫ АГРЕГИРОВАННЫХ ДАННЫХ И СПОСОБ ПОИСКА ДАННЫХ ПОСРЕДСТВОМ СТРУКТУРЫ АГРЕГИРОВАННЫХ ДАННЫХ В СИСТЕМЕ УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ 2010
  • Маркин Сергей Павлович
RU2433467C1
ЭЛЕКТРОННАЯ БАЗА ДАННЫХ И СПОСОБ ЕЁ ФОРМИРОВАНИЯ 2017
  • Семенов Алексей Петрович
RU2650032C1
Способ распознавания протоколов низкоскоростного кодирования речи 2017
  • Аладинский Виктор Алексеевич
  • Вещунин Евгений Андреевич
  • Кузьминский Сергей Владиславович
  • Смирнов Павел Леонидович
RU2667462C1

Иллюстрации к изобретению RU 2 700 401 C1

Реферат патента 2019 года СПОСОБ ФОРМИРОВАНИЯ ИДЕНТИФИКАЦИОННЫХ ПРИЗНАКОВ ДЛЯ ГРУППЫ ОБЪЕКТОВ

Изобретение относится к области вычислительной техники. Технический результат заключается в обеспечении одновременного формирования групповых и индивидуальных идентификационных признаков объектов, динамического изменения значений идентификационных признаков при изменении входных управляющих последовательностей и многопоточное формирование идентификационных признаков. Технический результат достигается за счет формирования идентификационных признаков для группы объектов, входного потока данных, выходных битовых последовательностей, поля групповой и индивидуальной идентификации, набора квадратных параллельно расположенных матриц, индекса соответствующих ему номера строки и номера столбца, при этом элементы каждой строки и каждого столбца на каждой матрице соединяют между собой последовательно. 4 ил.

Формула изобретения RU 2 700 401 C1

Способ формирования идентификационных признаков для группы объектов, заключающийся в том, что для их формирования используют входной поток данных, результатом формирования идентификационных признаков являются выходные битовые последовательности, отличающийся тем, что идентификационный признак содержит поля групповой и индивидуальной идентификации, размер которых определяют заранее, формирование идентификационных признаков осуществляют с использованием набора квадратных параллельно расположенных матриц, каждая из которых содержит элементы, образующие столбцы и строки, каждому элементу присваивают индекс соответствующих ему номера строки и номера столбца, при этом элементы каждой строки и каждого столбца на каждой матрице соединяют между собой последовательно, каждый элемент первой матрицы со своим индексом последовательно соединяют с элементом такого же индекса последующих параллельных матриц, при этом элементы матриц являются случайными битовыми значениями, входной поток данных представляет собой числовые значения, состоящие из индекса строки, столбца и номера матрицы, при этом каждое числовое значение входного потока используют для выбора одной из матриц и одного из ее элементов, на выбранной матрице осуществляют перемещение выбранного элемента на место элемента первой матрицы, имеющего индекс строки и столбца равный единице, путем последовательного смещения других элементов, для получения выходных битовых последовательностей, являющихся идентификационными признаками для группы объектов, производят считывание элементов строк, столбцов на каждой матрице и элементов с одинаковым индексом на каждой из параллельно расположенных матриц, при этом из считанного множества битовых последовательностей выбирают количество последовательностей с одинаковыми значениями полей групповой идентификации и разными значениями полей индивидуальной идентификации, соответствующее количеству объектов в группе.

Документы, цитированные в отчете о поиске Патент 2019 года RU2700401C1

ИНТЕРФЕЙС ВЫСОКОСКОРОСТНОЙ ПЕРЕДАЧИ ДАННЫХ С УЛУЧШЕННЫМ УПРАВЛЕНИЕМ СОЕДИНЕНИЕМ 2004
  • Андерсон Джон Джеймс
  • Стил Брайан
  • Уайли Джордж А.
  • Шекхар Шашанк
RU2341906C2
СПОСОБ СЖАТИЯ ДВОИЧНЫХ ДАННЫХ В ВИДЕ СТРУКТУРИРОВАННЫХ ИНФОРМАЦИОННЫХ БЛОКОВ 2010
  • Мартынов Александр Петрович
  • Николаев Дмитрий Борисович
RU2497277C2
СПОСОБ СЖАТИЯ И ВОССТАНОВЛЕНИЯ ДАННЫХ БЕЗ ПОТЕРЬ 2009
  • Муллов Сергей Борисович
RU2403677C1
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1

RU 2 700 401 C1

Авторы

Волков Константин Олегович

Мартынов Александр Петрович

Мартынова Инна Александровна

Николаев Дмитрий Борисович

Николаева Ирина Александровна

Фомченко Виктор Николаевич

Даты

2019-09-16Публикация

2019-03-19Подача