СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ ЛЕТАТЕЛЬНОГО АППАРАТА ОТНОСИТЕЛЬНО ВЗЛЕТНО-ПОСАДОЧНОЙ ПОЛОСЫ Российский патент 2019 года по МПК B64F1/18 G05D1/00 

Описание патента на изобретение RU2700908C1

Изобретение относится к навигации и предназначено для определения пространственного положения летательного аппарата относительно земли. Может использоваться как для автономной навигации, так и для работы в комплексе с другими навигационными системами.

Известен способ определения ориентации подвижного объекта по координатам реперных источников (РИ), включающий определение сигналов, соответствующих положению изображения РИ в плоскости фотодетектора, определение углов пеленгов каждого РИ по полученным сигналам с учетом фокусного расстояния объектива и определение координат РИ по данным углов-пеленгов с учетом расстояния между РИ.

Этот способ реализован в устройстве, содержащем реперные источники на подвижном объекте, а на неподвижном - два фотоприемных оптико-локационных блока и блок определения координат РИ и ориентации подвижного объекта, описанный в патенте на изобретение [Патент GB №2002986 А, 8 МПК G01S 13/46, опубл. 28.02.1979].

Недостатком описанного аналога является использование реперных источников с известным расположением на подвижном объекте, а также определение только ориентации подвижного объекта при неизвестном местоположении, что не может обеспечить автоматизацию посадки.

Известен наиболее близкий к заявляемому изобретению способ определения координат летательного аппарата относительно взлетно-посадочной полосы и устройство для его осуществления, основанный на приеме излучения трех наземных лазерных маяков посредством цифровой фотокамеры, установленной на борту ЛА и вычислении его координат по координатам маяков на изображении, снимаемом с фотоматрицы, описанный в патенте на изобретение [Патент RU №2347240, 8 МПК G01S 13/46, опубл. 20.02.2009].

Недостатком этого способа является низкое угловое разрешение и большие погрешности измерения координат поскольку для обеспечения видимости маяков при эволюциях ЛА неуправляемая фотокамера используется в короткофокусном режиме. Кроме этого, возникает необходимость обработки движущихся изображений маяков, что также способствует увеличению погрешностей измерения координат ЛА.

Технической задачей изобретения является повышение точности измерения координат ЛА и обеспечение видимости лазерных маяков в широком диапазоне изменения координат ЛА в процессе посадки.

Технический результат изобретения достигается тем, что в способе определения координат летательного аппарата, основанном на получении изображения трех наземных лазерных маяков с известными координатами и вычислении координат летательного аппарата, осуществляют стабилизацию положения изображений на фотоматрице двух фронтально расположенных на взлетно-посадочной полосе из трех лазерных маяков, определяют координаты летательного аппарата относительно взлетно-посадочной полосы.

Сущность изобретения заключается в том, что осуществляют стабилизацию положения изображений на фотоматрице двух фронтально расположенных на взлетно-посадочной полосе из трех лазерных маяков, определяют координаты летательного аппарата относительно взлетно-посадочной полосы.

В известном способе определения координат летательного аппарата погрешности измерения например дальности ΔX* имеют обратную зависимость от фокусного расстояния объектива фотокамеры, поэтому малое фокусное расстояние обусловленное необходимостью широкого поля зрения приводит к большим ошибкам измерения координат

где ΔX*, Δz* - погрешности измерения дальности и расстояния между изображениями фронтально расположенных маяков на фотоматрице, L1 - расстояние между фронтально расположенными маяками, F - фокусное расстояние фотообъектива, X - дальность до маяков.

Стабилизация положения изображений на фотоматрице двух фронтально расположенных маяков обеспечивает максимально возможное значение фокусного расстояния для всех дальностей и следовательно меньший уровень погрешностей измерения координат.

На фиг. 1 показана оптическая схема измерения линейных и угловых координат положения ЛА относительно ВПП; M1, М2, М3 - лазерные маяки, R1, R2, R3 - изображения маяков на фотоматрице.

На фиг. 2 показана структура системы стабилизации изображений маяков с цифровым вычислителем 5, кардановым подвесом 4, цифровой фотокамерой 3, в состав которой в свою очередь входят варифокальный фотообъектив 1 и фотоматрица 2.

Принцип измерения координат основан на формировании изображений трех лазерных наземных маяков на ФМ цифровой фотокамеры, обработке оцифрованных изображений с целью определения координат изображений маяков (уk, zk), вычислении линейных и угловых координат ЛА относительно ВПП.

Система координат O'X'Y'Z' подвижная система, связанная с геометрическим центром фотоматрицы. Ось оптическая ось цифровой фотокамеры, - оси симметрии фотоматрицы.

единичные орты связанной системы координат OXYZ;

единичные орты измерительной системы координат ;

единичные орты нормальной системы координат F - фокусное расстояние фотообъектива, м.

Единичные орты связаны между собой известным соотношением

где bij - элементы матрицы направляющих косинусов (В), i=1 … 3, j=1 … 3.

где углы θυ, θψ, θγ - ориентации карданова подвеса относительно связанной системы координат.

Единичные орты связаны между собой соотношением

где αij - элементы матрицы направляющих косинусов (A), i=1 … 3, j=1 … 3.

ψ - угол рыскания, υ - угол тангажа, γ - угол крена ЛА.

Преобразование координат произвольного вектора из связанной системы координат OXYZ в нормальную систему координат осуществляется посредством известного соотношения, учитывающего только взаимное угловое положение систем координат. Связь между старыми и новыми координатами вектора для случая, когда оба базиса являются ортонормированными, задается следующей формулой:

Тогда координаты измерительной и нормальной систем связаны посредством следующего соотношения

Необходимо определить координаты ЛА в нормальной системе координат.

Вектор, описывающий пространственное положение объектива в системе (точка F) относительно n-го маяка обозначим :

где - координаты вектора - искомые координаты вектора (положение объектива в системе ), - координаты n-го маяка в нормальной системе координат.

Спроецируем вектор на оси измерительной системы координат

Вектор в системе координат O'X'Y'Z' выражается следующим образом

Вектора лежат на одной прямой, поэтому должны удовлетворять условию коллинеарности

В скалярном виде это условие перепишется в следующем виде

Поскольку полученные уравнения линейно-зависимы, что легко проверяется, то отбросим первое из них и преобразуем два других, получим

где n=1 … 3.

При наличии шести неизвестных двух полученных уравнений недостаточно для решения задачи об определении местоположения ЛА, поэтому используем три разнесенных лазерных маяка (n=1 … 3), которые не расположены на одной прямой. Таким образом, полученные уравнения связывают шесть неизвестных переменных при этом величины известны.

Полученная система уравнений (6) относительно дальности высоты бокового отклоненияи углов рыскания ψ, крена γ, тангажа υ является нелинейной. Нелинейность вносят коэффициенты матрицы направляющих косинусов, представляющие собой произведения тригонометрических функций рыскания, крена и тангажа, а также произведения коэффициентов матрицы направляющих косинусов на дальность, высоту и боковое отклонение. Система уравнений (6) может быть решена одним из численных методов при условии, что координаты маяков на ВПП известны. Причем наиболее предпочтительным является метод Ньютона-Рафсона, который обеспечивает быструю сходимость.

Слежение за созвездием маяков. Опыт использования камеры видеонаблюдения, размещенной в кардановом подвесе с гироскопической стабилизацией положения камеры, показывает, что значительные дрейфы микромеханических гироскопов приводят к тому, что рама курса оказывается свободно дрейфующей в азимуте, поэтому необходима стабилизация положения изображения объекта интереса на фотоматрице камеры. Кроме этого, погрешности измерения параметров местоположения ЛА существенно зависят от фокусного расстояния фотообъектива, при этом желательно использовать наибольшее фокусное расстояние, а это возможно, если фокусное расстояние регулируется автоматически, обеспечивая его наибольшее значение на этой дальности. Во время посадки объектом интереса является пара фронтально расположенных наземных лазерных маяков (стабилизация положения изображений всех трех маяков возможна только при движении ЛА по единственным образом расположенной прямой траектории), поэтому рассмотрим решение задачи стабилизации изображения пары лазерных маяков на фотоматрице камеры. Величины углов θγ, θψ, θυ снимаются с датчиков углов карданова подвеса, при этом управляющие сигналы для рам карданова подвеса формируются таким образом, чтобы оптическая ось фотокамеры проходила через середину отрезка М1М2. Изображение отрезка М1М2 на фотоматрице - отрезок S1S2 должно совместиться со строкой фотоматрицы. Для обеспечения этих условий вместо сигналов гироскопической стабилизации сформируем три следующих сигнала управления рамами подвеса

где Мγ, Мυ, Mψ - моменты сил в каналах рам крена, тангажа и рыскания, Kγ, Kυ, Kψ - коэффициенты передачи каналов отработки рам крена, тангажа и рыскания.

Важным элементом системы слежения за парой маяков (стабилизации положения изображений) является обеспечение стабильности расстояния между изображениями при изменении дальности до БЛА. Этого можно достигнуть автоматическим изменением фокусного расстояния вариообъектива камеры пропорционально расстоянию до маяков

где KF - коэффициент передачи канала регулирования фокусного расстояния объектива, - расстояние между фронтально расположенными маяками M1 и М2, - заданное значение фокусного расстояния.

Все описанные изменения в схеме карданова подвеса отражены в следующей структуре системы стабилизации изображений маяков, показанные на фиг. 2

Таким образом, наилучшим образом обеспечению измерений местоположения ЛА на посадке отвечает монокулярная система технического зрения, установленная на его борту, причем система стабилизации рам карданова подвеса должна иметь предложенную структуру.

Похожие патенты RU2700908C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ И УГЛОВ ОРИЕНТАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ОТНОСИТЕЛЬНО ВЗЛЕТНО-ПОСАДОЧНОЙ ПОЛОСЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Конотоп Василий Иванович
  • Гузеев Алексей Евгеньевич
  • Ипполитов Сергей Викторович
  • Бондарев Валерий Георгиевич
  • Лейбич Артем Анатольевич
RU2347240C2
Способ обеспечения посадки вертолета 2016
  • Бондарев Валерий Георгиевич
  • Ипполитов Сергей Викторович
  • Озеров Евгений Викторович
  • Лопаткин Дмитрий Викторович
RU2621215C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ И УГЛОВ ОРИЕНТАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ОТНОСИТЕЛЬНО ВЗЛЕТНО-ПОСАДОЧНОЙ ПОЛОСЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Бондарев Валерий Георгиевич
  • Бондарев Виталий Валерьевич
  • Бондарев Михаил Валерьевич
  • Ипполитов Сергей Викторович
  • Конотоп Василий Иванович
  • Лейбич Артем Анатольевич
RU2378664C1
СПОСОБ ЛОКАЛЬНОЙ НАВИГАЦИИ ПОДВИЖНОГО ОБЪЕКТА 2018
  • Грунин Евгений Вячеславович
  • Скляров Александр Николаевич
  • Агеев Андрей Михайлович
  • Бондарев Валерий Георгиевич
  • Ипполитов Сергей Викторович
RU2706444C1
СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ ЛЕТАТЕЛЬНОГО АППАРАТА ОТНОСИТЕЛЬНО ВЗЛЕТНО-ПОСАДОЧНОЙ ПОЛОСЫ 2018
  • Агеев Андрей Михайлович
  • Бондарев Валерий Георгиевич
  • Ипполитов Сергей Викторович
  • Лопаткин Дмитрий Викторович
  • Озеров Евгений Викторович
  • Проценко Виталий Владимирович
  • Фатеев Илья Александрович
RU2706443C1
СПОСОБ ГРУППОВОЙ ВИДЕОНАВИГАЦИИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2021
  • Бондарев Валерий Георгиевич
  • Ипполитов Сергей Викторович
  • Лопаткин Дмитрий Викторович
  • Титов Данил Евгеньевич
  • Полозов Никита Валерьевич
  • Чернышев Михаил Андреевич
RU2758285C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ И УГЛОВ ОРИЕНТАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ОТНОСИТЕЛЬНО ВЗЛЕТНО-ПОСАДОЧНОЙ ПОЛОСЫ 2014
  • Бондарев Валерий Георгиевич
  • Сербин Евгений Михайлович
  • Уманский Евгений Андреевич
RU2548366C1
Способ навигации подвижного объекта 2016
  • Кудаев Алексей Николаевич
  • Косенко Алексей Александрович
  • Бондарев Валерий Георгиевич
  • Ипполитов Сергей Викторович
  • Озеров Евгений Викторович
  • Лопаткин Дмитрий Викторович
RU2626017C1
СПОСОБ ПОСАДКИ БВС САМОЛЕТНОГО ТИПА НА ВЗЛЕТНО-ПОСАДОЧНУЮ ПОЛОСУ С ИСПОЛЬЗОВАНИЕМ ОПТИЧЕСКИХ ПРИБОРОВ РАЗЛИЧНОГО ДИАПАЗОНА 2019
  • Целовальникова Наталья Евгеньевна
RU2724908C1
СПОСОБ ОПРЕДЕЛЕНИЯ КАЧКИ АВИАНОСЦА И МЕСТОПОЛОЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Бондарев Валерий Георгиевич
  • Бондарев Виталий Валерьевич
  • Бондарев Михаил Валерьевич
  • Гузеев Алексей Евгеньевич
RU2408848C1

Иллюстрации к изобретению RU 2 700 908 C1

Реферат патента 2019 года СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ ЛЕТАТЕЛЬНОГО АППАРАТА ОТНОСИТЕЛЬНО ВЗЛЕТНО-ПОСАДОЧНОЙ ПОЛОСЫ

Изобретение относится к способу определения координат летательного аппарата относительно взлетно-посадочной полосы. Способ заключается в последовательном фотоэкспонировании земной поверхности фотокамерой, размещенной на 3-рамном кардановом подвесе, установленной на летательном аппарате, при этом получают оцифрованные изображения трех наземных лазерных маяков с известными координатами, осуществляют стабилизацию положения изображений на фотоматрице двух фронтально расположенных на взлетно-посадочной полосе из трех лазерных маяков, определяют координаты летательного аппарата относительно взлетно-посадочной полосы. 2 ил.

Формула изобретения RU 2 700 908 C1

Способ определения координат летательного аппарата относительно взлетно-посадочной полосы, заключающийся в том, что осуществляют последовательное фотоэкспонирование земной поверхности фотокамерой, размещенной на 3-рамном кардановом подвесе, установленной на летательном аппарате, получают оцифрованные изображения трех наземных лазерных маяков с известными координатами, отличающийся тем, что осуществляют стабилизацию положения изображений на фотоматрице двух фронтально расположенных на взлетно-посадочной полосе из трех лазерных маяков, определяют координаты летательного аппарата относительно взлетно-посадочной полосы.

Документы, цитированные в отчете о поиске Патент 2019 года RU2700908C1

СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ И УГЛОВ ОРИЕНТАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ОТНОСИТЕЛЬНО ВЗЛЕТНО-ПОСАДОЧНОЙ ПОЛОСЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Конотоп Василий Иванович
  • Гузеев Алексей Евгеньевич
  • Ипполитов Сергей Викторович
  • Бондарев Валерий Георгиевич
  • Лейбич Артем Анатольевич
RU2347240C2
Горизонтальный шнековый питатель 1960
  • Бараш З.Д.
  • Георгиевский Ю.В.
  • Колосов Е.М.
SU140658A1
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ТРАНСПОРТНОГО СРЕДСТВА (ВАРИАНТЫ) 2016
  • Косткин Михаил Дмитриевич
RU2649840C1
WO 2005060346 A2, 07.07.2005
СИСТЕМА ПОСАДКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2008
  • Пасюк Виктор Павлович
RU2386176C2

RU 2 700 908 C1

Авторы

Агеев Андрей Михайлович

Бондарев Валерий Георгиевич

Ипполитов Сергей Викторович

Лопаткин Дмитрий Викторович

Озеров Евгений Викторович

Проценко Виталий Владимирович

Смирнов Дмитрий Андреевич

Даты

2019-09-23Публикация

2018-04-06Подача