Устройство для моделирования процесса обнаружения подвижного объекта Российский патент 2019 года по МПК G06F17/16 G06N7/06 

Описание патента на изобретение RU2701077C1

Изобретение относится к автоматике и вычислительной технике и может быть использовано в специализированных устройствах вычислительной техники для моделирования процесса обнаружения подвижного объекта космическим аппаратом (КА).

Известны своим практическим использованием устройства, моделирующие процесс обнаружения подвижных объектов, космическими аппаратами.

Недостатком устройства, моделирующего процесс обнаружения подвижных объектов космическими аппаратами, являются:

невозможность представления данных с результатами моделирования в формализованном виде;

отсутствие возможности оформления каталога для проведения последующих исследований;

Наиболее близким по технической сущности является (RU №2320013 С1) принцип работы которого основан на использовании математического аппарата при распределении ошибок, а именно нормального закона распределения, а также кругового закона в процессе обнаружения.

Применение подобных устройств ограничивается отсутствием интерфейса, позволяющего пользователю обрабатывать и анализировать данные полученные в ходе работы устройства

Задачей изобретения является создание блоков, позволяющих формировать каталог с выходными данными, а также позволяющие пользователю взаимодействовать с данными полученными в результате работы устройства.

Требуемый технический результат достигается тем, что в устройство, содержащее, блок хранения векторов, введены блок расчета сферического линейного расстояния на местности, блок расчета высоты орбиты КА, блок расчета угла отклонения проецирующего луча от местной вертикали, блок расчета предельного линейного разрешения и блок расчета вероятности обнаружения подвижного объекта, блок обработки результата процесса обнаружения подвижного объекта, блок подсчета временных показателей цикла обнаружения, блок индикации результатов обнаружения, регистр при этом, первый выход блока хранения векторов соединен с первым входом блока расчета сферического линейного расстояния на местности и вторым входом блока расчета высоты орбиты КА, а второй выход блока хранения векторов соединен с третьем входом блока расчета сферического линейного расстояния на местности, выход блока расчета высоты орбиты КА соединен с первым входом блока расчета угла отклонения проецирующего луча от местной вертикали и пятым входом блока расчета предельного линейного разрешения, выход блока расчета сферического линейного расстояния на местности соединен с третьим входом блока расчета угла отклонения проецирующего луча от местной вертикали и вторым входом блока расчета предельного линейного разрешения, выход блока расчета угла отклонения проецирующего луча от местной вертикали соединен с первым входом блока расчета предельного линейного разрешения, выход которого соединен с первым входом блока расчета вероятности обнаружения подвижного объекта, выход которого соединен с первым входом блока обработки результата процесса обнаружения подвижного объекта, первый выход которого соединен с регистром, второй выход блока обработки процесса обнаружения подвижного объекта соединен с блоком индикации результатов обнаружения, а третий выход соединен с блоком подсчета временных показателей цикла обнаружения объекта, выход которого соединен с регистром.

Сущность изобретения поясняется чертежом, где на фиг. 1 представлен возможный вариант построения устройства, который содержит:

1 - блок хранения векторов;

2 - блок расчета сферического линейного расстояния на местности;

3 - блок расчета высоты орбиты КА;

4 - блок расчета угла отклонения проецирующего луча от местной вертикали;

5 - блок расчета предельного линейного разрешения;

6 - блок расчета вероятности обнаружения подвижного объекта;

7 - блок обработки результата процесса обнаружения подвижного объекта;

8 - блок подсчета временных показателей цикла обнаружения;

9 - блок индикации результатов обнаружения;

10 - регистр.

Устройство для моделирования процесса обнаружения подвижного объекта работает следующим образом: Предполагается, что имеется РЛС регистрирующая координаты КА на момент времени t в геостационарной системе координат - и имеется датчик на подвижном объекте, который определяет его координаты в той же системе координат - В блоке хранения векторов 1 находятся вектора на момент времени t.

Затем, на первый и третий вход блока расчета сферического линейного расстояния на местности 2, передаются данные из первого и второго выхода блока хранения векторов 1 о местоположении КА и подвижного объекта в геоцентрической системе координат, соответственно. На второй вход блока расчета сферического линейного расстояния на местности 2 подано значение Rz - радиус Земли. В блоке расчета сферического линейного расстояния на местности 2 по формуле (1) рассчитывается значение L - сферическое линейное расстояние на местности от подспутниковой точки до подвижного объекта.

где - вектор характеризующий положение КА в геоцентрической системе координат на момент времени t;

- вектор характеризующий положение подвижного объекта на местности в геоцентрической системе координат на момент времени t. Так же на второй вход блока расчета высоты орбиты КА 3 передается из первого выхода блока хранения векторов 1 значение и на первый вход блок расчета высоты орбиты КА подано значение Rz. В данном блоке по формуле (2) рассчитывается значение Н - высоты орбиты КА над поверхностью Земли.

Далее, на первый и третий входы блока расчета угла отклонения проецирующего луча от местной вертикали 4 из выходов блоков расчета высоты орбиты КА 3 и расчета сферического линейного расстояния на местности 2 передаются значения Н и L соответственно. На второй вход блока расчета угла отклонения проецирующего луча от местной вертикали 4 подано значение Rz. В блоке расчета угла отклонения проецирующего луча от местной вертикали 4 по формуле (3) осуществляется расчет ϕ - угол отклонения проецирующего луча от местной вертикали.

После расчета ϕ, данное значение из выхода блока расчета угла отклонения проецирующего луча от местной вертикали 4 передается на первый вход блока расчета предельного линейного разрешения 5. Так же на третий вход данного блока передаются значения α - половина угла мгновенного поля зрения аппаратуры разведки установленной на КА (характеристика аппаратуры разведки установленной на КА), а на четвертый вход блока расчета предельного линейного разрешения 5 подано значение Rz. Из выходов блока расчета сферического линейного расстояния на местности 2 и блока расчета высоты орбиты КА 3 на второй и пятый вход блока расчета предельного линейного разрешения 5 передаются значения L и Н соответственно. В блоке расчета предельного линейного разрешения 5 по формуле (4) осуществляется расчет Δlp - предельного линейного разрешения.

Вероятность обнаружения подвижного объекта Роб зависит от соотношения размеров обнаруживаемого объекта и предельного разрешения в изображении подвижного объекта на снимке, таким образом, после расчета значения Δlp из выхода блока расчета предельного линейного разрешения 5 данное значение передается на первый вход блока расчета вероятности обнаружения подвижного объекта 6, так же на второй и третий входы данного блока передается значения S - ширина подвижного объекта и D - длина подвижного объекта, соответственно. В блоке расчета вероятности обнаружения подвижного объекта 6 по формуле (5) осуществляется расчет Роб - вероятности обнаружения подвижного объекта.

После расчета Роб из выхода блока расчета вероятности обнаружения подвижного объекта 6, данное значение передается, на первый вход блока обработки результата процесса обнаружения подвижного объекта 7.

В блоке обработки результата процесса обнаружения подвижного объекта 7 происходит сравнение значений ζ и Роб. Если ζ≤Роб то считается, что подвижный объект обнаружен, где ζ=0.8 - заданное значение вероятности при котором объект считается обнаруженным, после, данный результат подается на второй вход регистра 9 и на вход блока индикации результатов обнаружения 10.

В блоке подсчета временных показателей цикла обнаружения объекта 8 происходит суммирование времени выполнения всех блоков по формуле t1+t2+…+tn=Т где n - номер блока, после расчета данное значение подается на первый вход регистра 9.

В блоке индикации результатов обнаружения 10 происходит подача сигнала на индикаторы, зеленого - если объект обнаружен и красного, если не обнаружен.

Указанный алгоритм расчета вероятности обнаружения подвижного объекта реализуется следующим образом.

При запуске устройства от внешнего источника, не показанного на чертеже, в блок хранения векторов 1 передаются координаты КА в геоцентрической системе координат - и текущие координаты подвижного объекта в геоцентрической системе координат - на момент времени t.

На первый и третий вход блока расчета сферического линейного расстояния на местности 2, передаются данные из первого и второго выхода блока хранения векторов 1 о местоположении КА - и подвижного объекта в геоцентрической системе координат - соответственно. На второй вход блока расчета сферического линейного расстояния на местности 2 подано значение Rz - радиус Земли. В блоке расчета сферического линейного расстояния на местности 2 по формуле (1) рассчитывается значение L - сферическое линейное расстояние на местности от подспутниковой точки до подвижного объекта.

На второй вход блока расчета высоты орбиты КА 3 передается из первого выхода блока хранения векторов 1 значение и на первый вход блок расчета высоты орбиты КА подано значение Rz. В данном блоке по формуле (2) рассчитывается значение Н - высоты орбиты КА над поверхностью Земли.

На первый и третий входы блока расчета угла отклонения проецирующего луча от местной вертикали 4 из выходов блоков расчета высоты орбиты КА 3 и расчета сферического линейного расстояния на местности 2 передаются значения Н и L соответственно. На второй вход блока расчета угла отклонения проецирующего луча от местной вертикали 4 подано значение Rz. В блоке расчета угла отклонения проецирующего луча от местной вертикали 4 по формуле (3) осуществляется расчет ϕ - угол отклонения проецирующего луча от местной вертикали.

После расчета ϕ, данное значение из выхода блока расчета угла отклонения проецирующего луча от местной вертикали 4 передается на первый вход блока расчета предельного линейного разрешения 5. Так же на третий вход данного блока передаются значения α - половина угла мгновенного поля зрения аппаратуры разведки, установленной на КА (характеристика аппаратуры разведки, установленной на КА), а на четвертый вход блока расчета предельного линейного разрешения 5 подано значение Rz. Из выходов блока расчета сферического линейного расстояния на местности 2 и блока расчета высоты орбиты КА 3 на второй и пятый вход блока расчета предельного линейного разрешения 5 передаются значения L и Н соответственно. В блоке расчета предельного линейного разрешения 5 по формуле (4) осуществляется расчет Δlp -предельного линейного разрешения.

Вероятность обнаружения подвижного объекта Роб зависит от соотношения размеров обнаруживаемого объекта и предельного разрешения в изображении подвижного объекта на снимке, таким образом, после расчета значения Δlp из выхода блока расчета предельного линейного разрешения 5 данное значение передается на первый вход блока расчета вероятности обнаружения подвижного объекта 6, так же на второй и третий входы данного блока передается значения S - ширина подвижного объекта и D - длина подвижного объекта, соответственно. В блоке расчета вероятности обнаружения подвижного объекта 6 по формуле (5) осуществляется расчет Роб - вероятности обнаружения подвижного объекта, значение которой подается, на первый вход блока обработки результата процесса обнаружения подвижного объекта 7.

В блоке обработки результата процесса обнаружения подвижного объекта 7 происходит сравнение значений ζ и Роб. Если ζ≤Роб то считается, что подвижный объект обнаружен, данный результат подается на второй вход регистра 9 и на вход блока индикации результатов обнаружения 10.

В блоке подсчета временных показателей цикла обнаружения объекта 8 происходит суммирование времени выполнения всех блоков по формуле t1+t2+…+tn=Т и данное значение подается на первый вход регистра 9,

В блоке индикации результатов обнаружения 10 происходит подача сигнала на индикаторы, зеленого - если объект обнаружен и красного, если не обнаружен.

Источники информации, принятые во внимание

1. RU №2214624 2003 г.

2. RU №1809436 1993 г.

3. RU №2320013 2006 г.

Похожие патенты RU2701077C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА ОБНАРУЖЕНИЯ ПОДВИЖНОГО ОБЪЕКТА 2006
  • Шпайхер Владислав Геннадьевич
  • Золотых Юрий Анатольевич
  • Стебихов Алексей Александрович
  • Мазур Павел Павлович
RU2320013C1
УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ КАТАЛОГА РАЗВЕДКИ ПОДВИЖНЫХ ОБЪЕКТОВ 2007
  • Борисов Эдуард Васильевич
  • Золотых Юрий Анатольевич
  • Стебихов Алексей Александрович
  • Шпайхер Владислав Геннадьевич
RU2353970C1
УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ КАТАЛОГА РАЗВЕДКИ РАЗНОТИПНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ 2013
  • Ролдугин Владимир Дмитриевич
  • Явтушенко Руслан Сергеевич
  • Казарин Владимир Ефимович
  • Колодько Юрий Викторович
RU2544761C1
Устройство для моделирования комбинаций разнотипных подвижных объектов 2017
  • Колодько Юрий Викторович
  • Колодько Алена Геннадиевна
  • Ролдугин Владимир Дмитриевич
  • Соколов Александр Михайлович
RU2643623C1
Устройство для моделирования состояний отдельного объекта в условиях неопределенности 2019
  • Колодько Юрий Викторович
  • Колодько Алёна Геннадьевна
  • Шатарова Анастасия Игоревна
  • Белевцева Анастасия Владимировна
RU2728501C1
Устройство и способ для обнаружения оптических дефектов деталей конструкционной оптики 2021
  • Евсеев Геннадий Юрьевич
  • Федоров Виктор Александрович
  • Макарченко Виктор Степанович
RU2789204C1
СПОСОБ И УСТРОЙСТВО УПРАВЛЕНИЯ ДВИЖЕНИЕМ КОСМИЧЕСКОГО АППАРАТА С УПРАВЛЯЕМОЙ ОРИЕНТАЦИЕЙ 2017
  • Глухов Виталий Иванович
  • Макеич Сергей Григорьевич
  • Нехамкин Леонид Иосифович
  • Рябиков Виктор Сергеевич
  • Тарабанов Алексей Анатольевич
  • Туманов Михаил Владимирович
RU2669481C1
Способ обзорной активно-пассивной латерационной радиолокации воздушно-космических объектов 2019
  • Джиоев Альберт Леонидович
  • Косогор Алексей Александрович
  • Омельчук Иван Степанович
  • Фоминченко Геннадий Леонтьевич
RU2713498C1
СПОСОБ ОБЗОРА НЕБЕСНОЙ СФЕРЫ С КОСМИЧЕСКОГО АППАРАТА ДЛЯ НАБЛЮДЕНИЯ НЕБЕСНЫХ ОБЪЕКТОВ И КОСМИЧЕСКАЯ СИСТЕМА ОБЗОРА НЕБЕСНОЙ СФЕРЫ ДЛЯ НАБЛЮДЕНИЯ НЕБЕСНЫХ ОБЪЕКТОВ И ОБНАРУЖЕНИЯ ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ, РЕАЛИЗУЮЩАЯ УКАЗАННЫЙ СПОСОБ 2012
  • Богачёв Алексей Викторович
  • Егоров Владимир Леонидович
  • Захаров Андрей Игоревич
  • Кулешов Юрий Павлович
  • Мисник Виктор Порфирьевич
  • Николаев Сергей Львович
  • Орловский Игорь Владимирович
  • Платонов Валерий Николаевич
  • Прохоров Михаил Евгеньевич
  • Рыхлова Лидия Васильевна
  • Шугаров Андрей Сергеевич
  • Шустов Борис Михайлович
  • Яковенко Юрий Павлович
RU2517800C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОРБИТЫ КОСМИЧЕСКОГО АППАРАТА 2019
  • Караваев Дмитрий Юрьевич
  • Боровихин Павел Александрович
  • Беляев Михаил Юрьевич
  • Рулев Дмитрий Николаевич
RU2729339C1

Иллюстрации к изобретению RU 2 701 077 C1

Реферат патента 2019 года Устройство для моделирования процесса обнаружения подвижного объекта

Изобретение относится к области автоматики и вычислительной техники. Технический результат заключается в обеспечении возможности моделирования процесса обнаружения космическим аппаратом подвижного объекта. Технический результат достигается за счет устройства для моделирования процесса обнаружения подвижного объекта, содержащего блок хранения векторов, блок расчета сферического линейного расстояния на местности, блок расчета высоты орбиты КА, блок расчета угла отклонения проецирующего луча от местной вертикали, блок расчета предельного линейного разрешения и блок расчета вероятности обнаружения подвижного объекта, блок обработки результата процесса обнаружения подвижного объекта, блок подсчета временных показателей цикла обнаружения, блок индикации результатов обнаружения, регистр. 1 ил.

Формула изобретения RU 2 701 077 C1

Устройство для моделирования процесса обнаружения подвижного объекта, содержащее блок хранения векторов, отличающееся тем, что в него дополнительно введены блок расчета сферического линейного расстояния на местности, блок расчета высоты орбиты КА, блок расчета угла отклонения проецирующего луча от местной вертикали, блок расчета предельного линейного разрешения и блок расчета вероятности обнаружения подвижного объекта, блок обработки результата процесса обнаружения подвижного объекта, блок подсчета временных показателей цикла обнаружения, блок индикации результатов обнаружения, регистр, при этом первый выход блока хранения векторов соединен с первым входом блока расчета сферического линейного расстояния на местности и вторым входом блока расчета высоты орбиты КА, а второй выход блока хранения векторов соединен с третьем входом блока расчета сферического линейного расстояния на местности, выход блока расчета высоты орбиты КА соединен с первым входом блока расчета угла отклонения проецирующего луча от местной вертикали и пятым входом блока расчета предельного линейного разрешения, выход блока расчета сферического линейного расстояния на местности соединен с третьим входом блока расчета угла отклонения проецирующего луча от местной вертикали и вторым входом блока расчета предельного линейного разрешения, выход блока расчета угла отклонения проецирующего луча от местной вертикали соединен с первым входом блока расчета предельного линейного разрешения, выход которого соединен с первым входом блока расчета вероятности обнаружения подвижного объекта, выход которого соединен с первым входом блока обработки результата процесса обнаружения подвижного объекта, первый выход которого соединен с регистром, второй выход блока обработки процесса обнаружения подвижного объекта соединен с блоком индикации результатов обнаружения, а третий выход соединен с блоком подсчета временных показателей цикла обнаружения объекта, выход которого соединен с регистром, на второй вход расчета сферического линейного расстояния на местности и первый вход блока расчета высоты орбиты КА и на второй вход блока расчета угла отклонения проецирующего луча от местной вертикали и четвертый вход блока расчета предельного линейного разрешения подано значение Rz - радиуса Земли, а на второй и третий входы блока расчета вероятности обнаружения подвижного объекта подаются значения S - ширины подвижного объекта, и D - длины подвижного объекта, соответственно, а на третий вход блока расчета предельного линейного разрешения подано значение α - половина угла мгновенного поля зрения аппаратуры разведки, установленной на КА, на первый вход блока обработки результата процесса обнаружения подвижного объекта подано значение Роб - вероятности обнаружения подвижного объекта, а на первый и второй выходы подается значение О - результат процесса обнаружения, на второй и на третий выходы подается , где tn - время обработки блока n, на выход блока подсчета временных показателей цикла обнаружения объекта подается значение Т - время цикла обнаружения.

Документы, цитированные в отчете о поиске Патент 2019 года RU2701077C1

УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА ОБНАРУЖЕНИЯ ПОДВИЖНОГО ОБЪЕКТА 2006
  • Шпайхер Владислав Геннадьевич
  • Золотых Юрий Анатольевич
  • Стебихов Алексей Александрович
  • Мазур Павел Павлович
RU2320013C1
УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА ПРИНЯТИЯ РЕШЕНИЙ 2002
  • Борисов Э.В.
  • Воробьев С.Н.
  • Золотых Ю.А.
  • Микитенко И.И.
RU2214624C2
УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССА ПЕРЕМЕЩЕНИЯ ПОДВИЖНОГО ОБЪЕКТА 2005
  • Борисов Эдуард Васильевич
  • Шпайхер Владислав Геннадьевич
  • Стебихов Алексей Александрович
  • Курята Богдан Иосифович
RU2298825C1
Устройство для моделирования комбинаций разнотипных подвижных объектов 2017
  • Колодько Юрий Викторович
  • Колодько Алена Геннадиевна
  • Ролдугин Владимир Дмитриевич
  • Соколов Александр Михайлович
RU2643623C1
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1

RU 2 701 077 C1

Авторы

Колодько Юрий Викторович

Касьянов Владислав Витальевич

Тацышин Николай Николаевич

Даты

2019-09-24Публикация

2019-02-15Подача