Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения Российский патент 2019 года по МПК C22C21/16 C22C21/18 

Описание патента на изобретение RU2702531C1

Изобретение относится к области металлургии, в частности к производству антифрикционных алюминиевых литейных сплавов с высокими трибологическими и прочностными характеристиками, используемыми в машиностроении при изготовлении монометаллических подшипников скольжения.

Монометаллические подшипники представляют собой подшипники скольжения в виде втулки, выполненной из антифрикционного металла или сплава, в которых опорная поверхность оси или вала скользит по рабочей (внутренней) поверхности втулки. Монометаллические подшипники получают из сплавов, обладающих достаточной прочностью и твердостью, чтобы при установке их в постели из стали или чугуна при рабочих температурах они могли сопротивляться потерям натяга. Для изготовления монометаллических подшипников успешно применяются антифрикционные алюминиевые сплавы, например, в ГОСТе 14113-78 раскрывается сплав марки АО9-2, содержащий компоненты при следующем соотношении, масс. %: олово 8,0-10,0, медь 2,0-2,5, никель 0,8-1,2, кремний 0,3-0,7, алюминий - остальное.

Недостатком данного сплава является его недостаточная прочность и твердость, затрудненная прирабатываемость и относительно низкая задиростойкость при повышенных значениях износа как самих сплавов так и стального контртела.

Наиболее близким к предложенному сплаву является литейный антифрикционный сплав для монометаллических подшипников скольжения, включающий олово, медь, кремний и алюминий, отличающийся тем, что он дополнительно содержит свинец, цинк, магний и титан при следующем соотношении компонентов, масс. %: олово 5-11, свинец 2-4, медь 1,5-4,5, кремний 0,4-1,5, цинк 1,5-4,5, магний 1,5-4,5, титан 0,03-0,2, алюминий - остальное (Патент РФ №2571665 С1, опубл. 20.12.2015 г).

Недостатком известного сплава, в том числе технической проблемой является низкая нагрузка задира, низкая площадь приработки, высокая средняя удельная нагрузка после приработки и высокий износ стали.

В основу заявленного изобретения был положен технический результат - расширение технологических возможностей за счет повышения нагрузки задира, площади приработки, предела прочности, относительного удлинения и твердости сплава при снижении средней удельной нагрузки после приработки путем изменения состава прототипа и соотношения его компонентов.

Технический результат достигается антифрикционным алюминиевым литейным сплавом для монометаллических подшипников скольжения, включающим олово, свинец 2-4 масс. %, медь, кремний, цинк, магний, титан 0,03-0,2 масс. % и алюминий остальное, дополнительно содержащим хром 0,8-1,2 масс. % в следующем соотношении вышеупомянутых компонентов, масс. %: олово 4,5-8, медь 3,5-4,5, кремний 0,6-1,0, цинк 2,0-3,0, магний 1,5-2,5.

Изобретение охарактеризовано следующим образом.

Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения включает, масс. %:

олово 4,5-8,

свинец 2-4,

медь 3,5-4,5,

кремний 0,6-1,0,

цинк 2,0-3,0,

магний 1,5-2,5,

титан 0,03-0,2,

хром 0,8-1,2,

алюминий - остальное.

Исходя из материаловедческого опыта в области антифрикционных алюминиевых литейных сплавов для монометаллических подшипников скольжения, введение хрома в состав сплава-прототипа повышает нагрузку задира и площадь приработки, снижает среднюю удельную нагрузку после приработки и уменьшает износ стали при сохранении на прежнем уровне остальных трибологических характеристик. Кроме того, экспериментальными опытами было установлено, что введение хрома в сплав позволило, при сохранении ударной вязкости на прежнем уровне, повысить следующие механические свойства: предел прочности, относительное удлинение и твердость. Это объясняется тем, что введение хрома в сплав с одной стороны позволило снизить содержание олова, что приводит к улучшению механических свойств а с другой стороны, увеличить количество легирующих элементов, что облегчает прохождение самоорганизации при трении, это, в свою очередь, приводит к снижению интенсивности изнашивания сплава и стального контртела.

Введение хрома в состав прототипа привело к изменению процентного отношения массового содержания (масс. %) других элементов, таких как олово, медь, кремний, цинк и магний при сохранении массового содержания свинца и титана в известных значениях.

Олово обеспечивает повышение комплекса антифрикционных свойств, при ухудшении механических свойств, но при его содержании в составе заявляемого сплава 4,5-8,0 от общего масс. %, и при использовании остальных компонентов сплава в заявляемых диапазонах, обеспечивается необходимый комплекс механических свойств (прочность, твердость, пластичность, трещиностойкость и ударная вязкость).

Свинец позволяет резко повысить антифрикционные свойства алюминиевых сплавов за счет образования на поверхностях трения при взаимодействии со смазкой так называемых «свинцовых мыл». Кроме того, образуя с оловом эвтектику, свинец упрочняет мягкие структурные составляющие и делает их более легкоплавкими. Благодаря этому, в зонах контакта при значительном повышении температуры до значений 170°С задира и схватывания не происходит. Таким образом, свинец значительно повышает задиростойкость и улучшает прирабатываемость.

Медь в заявляемом количестве упрочняет как алюминиевую матрицу, так и мягкую структурную составляющую, что положительно сказывается на таких антифрикционных свойствах, как задиростойкость и износостойкость.

Кремний в заявляемом количестве улучшает литейные свойства, снижает пористость, повышает твердость, задиростойкость, износостойкость за счет образования мелких твердых и равномерно распределенных включений второй фазы.

Цинк в заявляемом количестве упрочняет алюминиевую матрицу и мягкие структурные составляющие сплава с одновременным повышением прочности, твердости и пластичности. Легкоплавкие фазы с цинком имеют повышенную химическую активность, что способствует образованию защитных вторичных структур на поверхностях трения и повышает прирабатываемость, износостойкость и задиростойкость.

Магний упрочняет алюминиевую матрицу за счет вхождения в твердый раствор алюминия, а также за счет образования мелкодисперсных выделений вторых фаз на основе алюминия, меди и кремния. Магний и цинк входят в состав легкоплавкой эвтектики системы Sn-Pb, увеличивая ее прочность, пластичность и антифрикционные свойства всего сплава.

Титан модифицирует алюминиевые сплавы, уменьшая размеры зерен алюминия, и увеличивает их количество, способствуя равномерному распределению и уменьшению размеров включений мягкой фазы на основе эвтектик Sn-Pb, и улучшает структуру ее составляющих таким образом, что приводит к улучшению эксплуатационных характеристик.

Важно, чтобы заявленные компоненты олово 4,5-8 масс. %, свинец 2-4 масс. %, медь 3,5-4,5 масс. %, кремний 0,6-1,0 масс. %, цинк 2,0-3,0 масс. %, магний 1,5-2,5 масс. %, титан 0,03-0,2 масс. %, хром 0,8-1,2 масс. % и алюминий (остальное) находились в сплаве в совокупности и в заявленных количествах, потому что только их совместное влияние, улучшающее структуру и свойства сплава, позволяет достичь декларируемого технического результата.

Выход за заявленные интервалы содержания компонентов, отличающиеся от прототипа, не позволяет достичь необходимого уровня свойств.

Так, содержание хрома в сплаве менее 0,80 масс. %, например, сплав №1, приводит к снижению прочности, твердости, задиростойкости, прирабатываемости и износостойкости, а содержание более 1,2 масс. %, например, сплав №4, приводит к снижению ударной вязкости и антифрикционных свойств (Таблицы 1 и 2).

Если содержание олова менее 4,5 масс. %, например, сплав №5, то снижаются антифрикционные свойства сплавов - задиростойкость падает на 40-50%, износ материала увеличивается на 30-35% и давления при приработке увеличивается на 37-50%, а содержание выше 8 масс. %, например, сплав №6, вызывает значительную ликвацию эвтектики в сплаве и приводит к увеличению износа материала на 30-40% и к снижению прочностных свойств - прочность снижается на 25-30%, твердость снижается на 20-25%, ударная вязкость снижается на 12-15% (Таблицы 3 и 4).

Содержание меди в сплаве менее 3,5 масс. %, например, сплав №7, оказывает снижение на прочность, твердость, износостойкость материала и его задиростойкость, а содержание меди более 4,5 масс. %, например, сплав №8, приводит к снижению пластичности и ударной вязкости, а также к повышению износа стального контртела и самого материала, и к затруднению прирабатываемости (Таблицы 5 и 6).

Если содержание кремния меньше 0,6 масс. %, например, сплав №9, то ухудшаются литейные свойства, уменьшается прочность и твердость, снижаются износостойкость и задиростойкость, а если содержания кремния более 1,0 масс. %, например, сплав №10, то уменьшаются пластичность и ударная вязкость, снижаются износостойкость стального контртела, прирабатываемость и задиростойкость (Таблицы 7 и 8).

Уменьшение содержания цинка менее 2,0 масс. %, например, сплав №11, приводит к уменьшению прочности и твердости, а так же к снижению износостойкости, прирабатываемости и задиристости, а увеличение содержания цинка более 3,0 масс. %, например, сплав №12, делает сплав излишне твердым, что приводит к снижению пластичности и ударной вязкости, что свою очередь отрицательно влияет на параметры антифрикционности сплава, а именно уменьшается износостойкость стального контртела и ухудшается прирабатываемость (Таблицы 9 и 10).

Введения магния в количестве менее 1,5 масс. %, например, сплав №13, приводит к недостаточному упрочнению и недостаточной антифрикционности сплава, а более 2,5 масс. %, например, сплав №14, - делает сплав излишне твердым, что отрицательно влияет на все параметры антифрикционности. Влияние магния более существенно по сравнению с влиянием цинка (Таблицы 11 и 12).

Уменьшение диапазона легирования медью, оловом, цинком, кремнием, магнием и введение хрома позволило стабилизировать механические свойства сплава и трибологические характеристики, уменьшив диапазон разброса свойств и характеристики.

Пример осуществления изобретения

Экспериментальным путем были получены 5 сплавов (например, сплавы №2, 3, 15, 16, 17), в соответствии с заявленными соотношениями компонентов (масс. %), обладающие улучшенные трибологические характеристики и механические свойства. Компонентное содержание этих сплавов приведены в таблице 13, а в таблице 14 приведены значение их характеристик и свойств.

Из полученных экспериментальных результатов можно делать вывод о том, что новый сплав обладает следующими свойствами:

Таким образом, заявленная совокупность существенных признаков, отраженная в формуле изобретения, обеспечивает получение заявленного технического результата - расширение технологических возможностей за счет повышения нагрузки задира, площади приработки, предела прочности, относительного удлинения и твердости сплава при снижении средней удельной нагрузки после приработки путем изменения состава прототипа и соотношения его компонентов.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в формуле признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности, неизвестной на дату приоритета из уровня техники, необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении относится к области металлургии, в частности к производству антифрикционных алюминиевых литейных сплавов с высокими трибологическими и прочностными характеристиками, используемыми в машиностроении при изготовлении монометаллических подшипников скольжения;

- для заявленного объекта в том виде, как он охарактеризован в формуле изобретения, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует критериям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Похожие патенты RU2702531C1

название год авторы номер документа
Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения 2018
  • Гершман Иосиф Сергеевич
  • Миронов Александр Евгеньевич
  • Солис Пинарготе Нестор Вашингтон
  • Подрабинник Павел Анатольевич
  • Перетягин Никита Юрьевич
RU2702530C1
ЛИТЕЙНЫЙ АНТИФРИКЦИОННЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ МОНОМЕТАЛЛИЧЕСКИХ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2014
  • Миронов Александр Евгеньевич
  • Гершман Иосиф Сергеевич
  • Гершман Евгений Иосифович
RU2571665C1
АНТИФРИКЦИОННЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2014
  • Миронов Александр Евгеньевич
  • Гершман Иосиф Сергеевич
  • Овечкин Андрей Викторович
  • Котова Елена Геннадьевна
  • Кошелев Михаил Альбертович
  • Гершман Евгений Иосифович
RU2577876C1
СПОСОБ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛИЧЕСКОЙ ЗАГОТОВКИ ИЗ АНТИФРИКЦИОННОГО СПЛАВА 2015
  • Миронов Александр Евгеньевич
  • Гершман Иосиф Сергеевич
  • Овечкин Андрей Викторович
  • Котова Елена Геннадьевна
  • Кошелев Михаил Альбертович
  • Гершман Евгений Иосифович
RU2590464C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1992
  • Бурхина Анна Николаевна[Ru]
  • Белянский Эдуард Максимович[Ua]
  • Чайковский Анатолий Александрович[Ua]
  • Заброцкий Александр Павлович[Ua]
  • Беденко Владимир Антонович[Ua]
  • Прудиус Василий Никифорович[Ua]
  • Заброцкий Иван Павлович[Ua]
RU2039116C1
Износостойкий антифрикционный материал на основе двухфазного сплава Al-Sn, легированного железом, и способ его получения 2022
  • Русин Николай Мартемьянович
  • Скоренцев Александр Леонидович
RU2789324C1
АНТИФРИКЦИОННЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2006
  • Батаев Анатолий Андреевич
  • Батаев Владимир Андреевич
  • Кузьмин Николай Гаврилович
  • Рыжанков Константин Георгиевич
RU2329321C2
АНТИФРИКЦИОННЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2016
  • Кондренков Тимофей Александрович
RU2643284C2
Антифрикционный сплав на основе цинка-олова-алюминия 2019
  • Вязник Сергей Иванович
RU2710312C1
АНТИФРИКЦИОННЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1992
  • Потеряев Ю.П.
  • Кузьмин Н.Г.
  • Битнер Э.Г.
  • Кондренков А.В.
  • Новосельский Ю.А.
RU2030475C1

Реферат патента 2019 года Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения

Изобретение относится к области металлургии, в частности к производству антифрикционных алюминиевых литейных сплавов с высокими трибологическими и прочностными характеристиками, используемыми в машиностроении при изготовлении монометаллических подшипников скольжения. Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения содержит, мас.%: олово 4,5-8, свинец 2-4, медь 3,5-4,5, кремний 0,6-1,0, цинк 2,0-3,0, магний 1,5-2,5, титан 0,03-0,2, хром 0,8-1,2, алюминий - остальное. Сплав характеризуется высокими значениями нагрузки задира, площади приработки, предела прочности, относительного удлинения и твердости сплава при снижении средней удельной нагрузки. 14 табл., 1 пр.

Формула изобретения RU 2 702 531 C1

Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения, содержащий олово, свинец, медь, кремний, цинк, магний, титан и алюминий, отличающийся тем, что он дополнительно содержит хром, при следующем соотношении компонентов, мас.%:

олово 4,5-8 свинец 2-4 медь 3,5-4,5 кремний 0,6-1,0 цинк 2,0-3,0 магний 1,5-2,5 титан 0,03-0,2 хром 0,8-1,2 алюминий остальное

Документы, цитированные в отчете о поиске Патент 2019 года RU2702531C1

US 4108691 A1, 22.08.1978
ЛИТЕЙНЫЙ АНТИФРИКЦИОННЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ МОНОМЕТАЛЛИЧЕСКИХ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2014
  • Миронов Александр Евгеньевич
  • Гершман Иосиф Сергеевич
  • Гершман Евгений Иосифович
RU2571665C1
WO 2001034330 A1, 17.05.2001
ЛИТЕЙНЫЙ АНТИФРИКЦИОННЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2002
  • Васин В.А.
  • Георгиевский М.Г.
  • Сомов О.В.
RU2226569C1
US 2012138481 A1, 07.06.2012.

RU 2 702 531 C1

Авторы

Гершман Иосиф Сергеевич

Миронов Александр Евгеньевич

Солис Пинарготе Нестор Вашингтон

Кузнецова Екатерина Викторовна

Перетягин Павел Юрьевич

Даты

2019-10-08Публикация

2018-11-28Подача