Ароматические полиэфиры конструкционного назначения и способ их получения Российский патент 2019 года по МПК C08G75/23 C08G65/40 

Описание патента на изобретение RU2703555C1

Изобретение относится к ароматическим полиэфирам, в частности, к ароматическим полиэфирсульфонарилатам, которые могут быть использованы в качестве полимерных матриц различных конструкционных материаловдля применения в авиационной, космической, автомобильной и других отраслях промышленности, а также в электронике и электротехнике.

Известны ароматические полисульфоны, полиэфирсульфоны, сополимеры и блок-сополимеры на основе различных диоксисоединений и дигалогенароматических соединений. Для увеличения эксплуатационных характеристик полисульфонов используют сополимеризацию, где в качестве сомономеров используют как смеси различных диоксисоединений, так и смеси различных дигалогенароматических соединений.

1. Borodulin, A.S., Kalinnikov, A.N., Bazheva, R.C. at all. Receipt and investigation of performance characteristics of super constructions polyesters // (2018) International Journal of Mechanical Engineering and Technology, 9 (13), pp. 1117-1127.

2. Borodulin, A.S., Kalinnikov, A.N., Bazheva, R.C. at all Synthesis and properties of aromatic polyethersulfones // International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 13, December 2018, pp. 1109-1116.

3. Borodulin A.S., Kalinnikov A.N., Kharaev A.M. at all. New Polymeric Binders for the Production of Composit // International Conference on Modern Trends in Manufacturing Technologies and Equipment 2018. International Journal of Materials today: proceedings. Volume 11. Issue P1. 2019. pp. 3107-3111.

По структуре и свойствам наиболее близкими к предлагаемым полиэфирам являются ароматические полиэфиры на основе олигоэфиров с дихлорэтиленовой группой с 4,4'-дихлордифенилсульфоном по статье Kharaev A.M., Bazheva, R.C, Begieva M.B. atall. Polyethersulfones with Improved Thermophysical Properties // Polymer Sciencs, Series D, 2019, Vol. 12, No. 1, pp. 24-28.

Однако, данные полиэфиры обладают невысокими показателями эксплуатационных характеристик.

Задачей изобретения является создание ароматических полиэфиров с высокими механическими характеристиками, стойких к воздействиям различных внешних условий, а также разработка эффективного способа их получения.

Задача решается получением новых ароматических полиэфиров формулы:

где n=1-20; m=1-30; z=1-30.

посредством взаимодействия эквимольной смеси дихлорангидрида терефталевой кислоты и 1,1-дихлор-2,2-ди(4-карбоксифенил)этилена с олигоэфирсульфонами на основе 1,1-дихлор-2,2-ди(n-оксифенил)этилена со степенями конденсации 1-20 по патенту РФ №2318804 НЕНАСЫЩЕННЫЕ ОЛИГОЭФИРСУЛЬФОНЫ ДЛЯ ПОЛИКОНДЕНСАЦИИ. Автор(ы): Хараев Арсен Мухамедович (RU), Бажева Рима Чамаловна (RU), Барокова Елена Беталовна (RU), Бегиева Мадина Биляловна (RU). Опубликовано: 10.03.2008 Бюл. №7.

Сущность способа заключается в том, что синтез полиэфира проводится сочетанием акцепторно-каталитической (на начальной стадии) и высокотемпературной поликонденсации в высококипящем органическом растворителе (дитолилметане или дифенилоксиде) при температурах от 25°С до 180°С в течение 0,5 ч и далее при 180°С еще 3 ч, используя 5-10% триэтиламина по отношению к диоксисоединениям, что дает возможность отделить раствор полимера от твердого побочного низкомолекулярного продукта синтеза за счет возгонки образовавшегося солянокислого триэтиламина, тем самым исключая стадию очистки конечного продукта.

Предлагаемые полиэфиры характеризуются повышенными показателями огне-, термо-, теплостойкости, а также механических характеристик.

Пример 1. В реактор емкостью 25 л, снабженный механической мешалкой, системой подачи азота, загружают 3401,16 г (4,38 моль) олигоэфирсульфона с n=1 (мол. масса = 776,52) и 5 л дифенилоксида (или дитолилметана). При перемешивании приливают 0,1225 л (0,084 моль) триэтиламина. После полного растворения олигомера в реакционную колбу вносят эквимольную смесь дихлорангидрида терефталевой кислоты в количестве 444,675 г (2,19 моль) и 1,1-дихлор-2,2-ди(4-карбоксифенил)этилена в количестве 819,269 г (2,19 моль). При перемешивании температуру поднимают в течение 0,5 ч до 180°С и реакцию проводят в течение 3 ч при интенсивном пропускании азота над реакционной массой. Раствор полимера разбавляют, выливая в смеситель с перемешиваемым подогретым тетрахлорэтаном. Полимер высаживают в изопропанол. Полимер дважды промывают тем же спиртом от следов высококипящего растворителя и сушат до постоянной массы при 150°С. Полимер не содержит следов низкомолекулярного продукта поликонденсации (солянокислый триэтиламин). Возогнанный солянокислый триэтиламин оседает на поверхности крышки реактора и может быть применен как самостоятельный продукт по своему назначению.

Свойства полученного полиэфира даны в таблице.

Примеры 2, 3. Синтезы проводят как в примере 1, только в качестве исходных олигомеров берутся олигомеры со степенями конденсации (для примера 2: n=10 (мол. масса = 5234,90), для примера 3: n=20 (мол. масса = 10188,79)).

Ароматические полиэфиры устойчивы в разбавленных растворах минеральных кислот и щелочей. Строение ароматических полиэфиров подтверждено ИК-спектроскопией и турбидиметрическим титрованием. На ИК-спектрах имеются полосы поглощения для простых и сложноэфирных связей и отсутствуют полосы для ОН-групп, что подтверждает полноту прохождения поликонденсационного процесса. На кривых турбидиметрического титрования имеются только по одному максимуму, что подтверждает образование статистического сополимера, а не смеси полимеров.

Технический результат изобретения состоит в расширении ассортимента ароматических полиэфиров, обладающих высокой тепло- и термостойкостью, повышенными значениями кислородного индекса, высокими механическими характеристиками, а также в упрощении способа получения полиэфиров за счет исключения стадии очистки.

Похожие патенты RU2703555C1

название год авторы номер документа
Полиэфиры для композиционных материалов и способ их получения 2019
  • Нелюб Владимир Александрович
  • Бородулин Алексей Сергеевич
  • Калинников Александр Николаевич
  • Хараев Арсен Мухамедович
  • Бажева Рима Чамаловна
  • Хараева Рузана Алексеевна
  • Бештоев Бетал Заурбекович
  • Щербин Сергей Николаевич
RU2706343C1
Полиэфиры для формирования препрегов и способ их получения 2019
  • Нелюб Владимир Александрович
  • Бородулин Алексей Сергеевич
  • Калинников Александр Николаевич
  • Хараев Арсен Мухамедович
  • Бажева Рима Чамаловна
  • Хараева Рузана Алексеевна
  • Бештоев Бетал Заурбекович
  • Щербин Сергей Николаевич
RU2706345C1
Ароматические полиэфиры 2020
  • Хараев Арсен Мухамедович
  • Бажева Рима Чамаловна
  • Инаркиева Зарета Идрисовна
  • Бажев Арсен Зурабиевич
  • Парчиева Марьям Магомедовна
  • Ялхороева Мадина Абуязитовна
  • Конгапшев Аскер Анибальевич
RU2752626C1
Галогенсодержащие ароматические сополиэфиркетоны 2021
  • Бажева Рима Чамаловна
  • Хараев Арсен Мухамедович
  • Бажев Арсен Зурабиевич
  • Конгапшев Аскер Анибальевич
RU2787165C1
АРОМАТИЧЕСКИЕ БЛОК-СОПОЛИЭФИРКЕТОНЫ 2015
  • Хараев Арсен Мухамедович
  • Беданоков Азамат Юрьевич
  • Бажева Рима Чамаловна
  • Машуков Нурали Иналович
RU2585281C1
АРОМАТИЧЕСКИЕ ПОЛИЭФИРСУЛЬФОНКЕТОНЫ 2013
  • Хараев Арсен Мухамедович
  • Бажева Рима Чамаловна
  • Бегиева Мадина Биляловна
RU2549180C2
АРОМАТИЧЕСКИЕ ПОЛИЭФИРЫ 2013
  • Хараев Арсен Мухамедович
  • Бажева Рима Чамаловна
  • Бегиева Мадина Биляловна
RU2536477C1
АРОМАТИЧЕСКИЕ ПОЛИЭФИРЫ 2011
  • Хараев Арсен Мухамедович
  • Бажева Рима Чамаловна
  • Казанчева Фатимат Крымовна
  • Бегиева Мадина Биляловна
RU2466152C1
АРОМАТИЧЕСКИЕ ПОЛИЭФИРСУЛЬФОНКЕТОНЫ 2013
  • Хараев Арсен Мухамедович
  • Бажева Рима Чамаловна
  • Бегиева Мадина Биляловна
RU2556228C2
АРОМАТИЧЕСКИЕ ПОЛИЭФИРЫ 2011
  • Хараев Арсен Мухамедович
  • Бажева Рима Чамаловна
  • Бегиева Мадина Биляловна
  • Казанчева Фатимат Крымовна
RU2466151C1

Реферат патента 2019 года Ароматические полиэфиры конструкционного назначения и способ их получения

Изобретение относится к ароматическим полиэфирам, в частности к ароматическим полиэфирсульфонарилатам, которые могут быть использованы в качестве конструкционных материалов в авиационной, космической, автомобильной и других отраслях промышленности, а также в электронике и электротехнике. Ароматические полиэфиры имеют нижеуказанную формулу, в которой n=1-20; m=1-30; z=1-30. Ароматические полиэфиры получают в две стадии. На первой стадии синтеза проводят акцепторно-каталитическую поликонденсацию олигоэфирсульфона на основе 1,1-дихлор-2,2-ди(n-оксифенил)этилена со степенью конденсации 1-20 с эквимольной смесью дихлорангидрида терефталевой кислоты и 1,1-дихлор-2,2-ди(4-карбоксифенил)этилена в высококипящем растворителе дитолилметане или дифенилоксиде при температуре 25-180°С в течение 0,5 ч. На второй стадии проводят высокотемпературную поликонденсацию в присутствии солянокислого триэтиламина в течение 3 ч при температуре 180°С. Далее раствор полимера разбавляют горячим тетрахлорэтаном и высаживают в изопропанол. Полученный полимер не содержит следов солянокислого триэтиламина. Возогнанный солянокислый триэтиламин собирают с внутренней поверхности крышки реактора, промывают дихлорэтаном и используют как самостоятельный продукт. Изобретение позволяет получить ароматические полиэфиры с высокими показателями огне-, тепло- и термостойкости и высокими механическими характеристиками. 2 н.п. ф-лы, 1 табл., 3 пр.

Формула изобретения RU 2 703 555 C1

1. Ароматические полиэфиры конструкционного назначения формулы:

,

где n=1-20; m=1-30; z=1-30.

2. Способ получения полиэфиров по п. 1, заключающийся в том, что проводят взаимодействие олигоэфирсульфонов на основе 1,1-дихлор-2,2-ди(n-оксифенил)этилена со степенью конденсации 1-20 с эквимольной смесью дихлорангидрида терефталевой кислоты и 1,1-дихлор-2,2-ди(4-карбоксифенил)этилена в течение 3,5 ч, отличающийся тем, что на первой стадии синтеза акцепторно-каталитическую поликонденсацию проводят в высококипящем растворителе (дитолилметане или дифенилоксиде) при температуре 25-180°С в течение 0,5 ч; для ускорения на второй стадии в течение 3 ч при температуре 180°С синтез проводят высокотемпературной поликонденсацией в присутствии солянокислого триэтиламина; далее раствор полимера разбавляют горячим тетрахлорэтаном, при этом высаженный в изопропанол ароматический полиэфир конструкционного назначения уже не содержит следов солянокислого триэтиламина, а сам возогнанный солянокислый триэтиламин можно собрать с внутренней поверхности крышки реактора, промыть дихлорэтаном и использовать как самостоятельный продукт.

Документы, цитированные в отчете о поиске Патент 2019 года RU2703555C1

Kharaev A.M., Bazheva R
Ch., Begieva M.B., Nelyub V.A., Borodulin A.S
Polyethersulfones with improved thermophysical properties
Polymer Science, 2019, v
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
Пишущая машина для тюркско-арабского шрифта 1922
  • Мадьярова А.
  • Туганов Т.
SU24A1
АРОМАТИЧЕСКИЕ ПОЛИЭФИРСУЛЬФОНКЕТОНЫ 2013
  • Хараев Арсен Мухамедович
  • Бажева Рима Чамаловна
  • Бегиева Мадина Биляловна
RU2556228C2
ОГНЕСТОЙКИЕ БЛОК-СОПОЛИЭФИРСУЛЬФОНКАРБОНАТЫ 2016
  • Бажева Рима Чамаловна
  • Хараев Арсен Мухамедович
  • Бажев Арсен Зурабиевич
RU2629191C1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1

RU 2 703 555 C1

Авторы

Нелюб Владимир Александрович

Бородулин Алексей Сергеевич

Калинников Александр Николаевич

Хараев Арсен Мухамедович

Бажева Рима Чамаловна

Хараева Рузана Алексеевна

Бештоев Бетал Заурбекович

Щербин Сергей Николаевич

Даты

2019-10-21Публикация

2019-06-26Подача