Однофазный поликристаллический иттрий-алюминиевый гранат, активированный эрбием, иттербием, и способ его получения Российский патент 2019 года по МПК C04B35/44 C04B35/50 C04B35/626 

Описание патента на изобретение RU2705848C1

Изобретение относится к области получения керамики на основе иттрий-алюминиевого граната, активированного редкоземельными элементами, такими как эрбий или иттербий. Заявленный прозрачный керамический материал может быть использован в качестве подложек для микросхем, оболочек натриевых ламп высокого давления, для изоляторов в термоэмиссионных преобразователях и в оптоэлектронике, а при введении в него ионов-активаторов (Nd3+, Eu3+, Cr3+ и др.) материал эффективен в качестве рабочей среды твердотельного лазера.

Из уровня техники известен способ получения поликристаллического иттрий-алюминиевого граната (ИАГ), который может быть допирован редкоземельными элементами, выбранными из Nd, Yb, Sc, Pr, Eu, Er (Патент США на изобретение US 7022262, кл. МПК С04В 35/44, опубл. 04.04.2006). Способ получения порошка включает: смешивание по меньшей мере одной соли алюминия с по меньшей мере одной солью иттрия; растворение указанной соли алюминия и соли иттрия в воде с образованием водной смеси, причем алюминий и иттрий присутствуют при мольном соотношении 3:5; добавление по меньшей мере одного восстановителя и по меньшей мере одного вспомогательного окислителя в указанную смесь; нагревание указанной смеси так, что указанная смесь подвергается горению и образуется порошок; а также прокаливание указанного порошка при температурах от 800°C до 1000°C в течение времени, достаточного для образования однофазного кубического иттрий-алюминиевого граната. Способ дополнительно включает объединение, по меньшей мере, одной соли редкоземельного элемента с указанной солью алюминия и указанной солью иттрия, причем редкоземельный элемент выбирают из Nd, Yb, Sc, Pr, Eu и Er и их комбинаций.

Однако данный способ получения известных материалов является достаточно сложным.

Известны прозрачные керамические материалы на основе оксида иттрия и иттрий-алюминиевого граната, обладающие высокими показателями светопропускания в видимой области спектра. Материалы можно получить различными способами, например, золь-гель технологией, термическим разложением солей, твердофазным синтезом, гидротермальным синтезом, вымораживанием, соосаждением, горением (Д.О. Лемешев и др., Перспектива создания новых оптически прозрачных материалов на основе оксида иттрия и иттрий-алюминиевого граната, журн. Стекло и керамика, 2008, №4, стр. 25-27).

Однако в данном техническом решении не установлен химический состав компонентов материала, который обеспечивает структуру целевого продукта, характеризующуюся высокими эксплуатационными свойствами и стабильными оптическими характеристиками.

Наиболее близким по технической сущности и достигаемому результату является материал, который содержит матрицу, выполненную в виде твердого раствора оксида скандия в оксиде иттрия состава Y1-xScxO1,5, где х=0,25-0,35, и наполнитель, выполненный в виде твердого раствора оксида скандия в иттрий-алюминиевом гранате состава Y3-3zAl5-5zSc8zO12, где z=0,20-0,45, при этом материал содержит матрицу в количестве 80-90 масс. % и наполнитель в количестве 10-20 масс. %. Описан способ изготовления материала, включающий смешивание предварительно полученной матрицы с предварительно полученным наполнителем, формование смеси и термообработку (Патент РФ на изобретение RU 2473514, кл. МПК С04В 35/505, С04В 35/622, С30В 29/28, опубл. 27.01.2013).

Однако одним из недостатков данного способа является использование в качестве одного из компонентов ИАГ оксида скандия, который способен замещать ионы иттрия и алюминия и способствовать получению однофазного граната, но использование оксида скандия не всегда приводит к получению однофазного граната из-за сложности встраивания скандия в виде оксида в основную матрицу граната.

Задачей настоящего изобретения является разработка способа получения стабильного однофазного иттрий-алюминиевого граната, допированного редкоземельными элементами, такими как эрбий или иттербий, имеющих стабильные оптические характеристики.

Технический результат - получение стабильного однофазного материала, обладающего высокими эксплуатационными характеристиками: светопропусканием, термостойкостью, теплопроводностью, диэлектрической проницаемостью и прочностью.

Стабильность получения однофазного граната связана с применением двух основных добавок: скандия в виде хлорида скандия на этапе соосаждения в количестве 20 мол. % сверх стехиометрического граната и использование предварительно измельченного гидроксида алюминия с размером частиц менее 1 мкм в качестве компенсирующей добавки. Количество вводимого гидроксида алюминия рассчитывается по данным рентгенофазового анализа и данным ИСП-МС спектрометрии (масс-спектрометрии с индуктивно-связанной плазмой) и может составлять от 5 до 10 масс. %.

Использование дополнительной компенсирующей добавки - гидроксида алюминия с размером частиц менее 1 мкм связано с тем, что при использовании метода обратного гетерофазного соосаждения необходима компенсация ионов алюминия, что связано с особенностями данного способа получения однофазного поликристаллического иттрий-алюминиевого граната.

Задача получения однофазного поликристаллического керамического материала на основе граната, активированного редкоземельными элементами (РЗЭ), решается описываемым прозрачным керамическим материалом, который содержит основную матрицу, полученную в виде смеси оксигидратов иттрия, алюминия, скандия и ряда редкоземельных активаторов, таких как: эрбий, иттербий, и компенсирующей добавки, вводимой в виде субмикронного гидроксида алюминия с размером частиц менее 1 мкм на стадии измельчения в стехиометрическом соотношении, для получения состава с общей формулой Y1,39-2,88Er0,03-1,5Sc0,29-0,56Al4,55-4,8O12.

Формула в качестве примера приведена для активатора эрбия.

Поставленная задача решается способом получения заявленного материала, который включает: растворение исходных прекурсоров (хлоридов иттрия, алюминия, эрбия, иттербия), взятых в стехиометрическом соотношении, и хлорида скандия в количестве 20 мол. % сверх стехиометрии граната; совместное соосаждение; фильтрацию; вакуумную сушку; измельчение в планетарной мельнице; просев; прокаливание при температуре 1200-1250°С в течение 1-3 часов; добавление расчетного количества субмикронного гидроксида алюминия в зависимости от содержания примесных фаз перовскита (YAP) и мартенсита (YAM), (с размером частиц менее 1 мкм) в смесь оксидов; измельчение в планетарной мельнице в течение 1-2 часов; формование компакта с использованием временного связующего; последующую термообработку для удаления связующего; вакуумное спекание керамических компактов при температуре 1800-÷1900°С; отжигание компактов на воздухе при температуре 1300-1400°С; шлифовку и полировку.

Предпочтительно гидроксид алюминия с размером частиц менее 1 микрона получать путем измельчения в спиртовом растворе в планетарной мельнице в течение 1-2 часов.

Предложенная методика позволяет получать однофазный иттрий-алюминиевый гранат с необходимыми эксплуатационными характеристиками.

При снижении содержания скандия в иттрий-алюминиевом гранате ниже заявленного, и при превышении содержания скандия, при термообработке происходит образование двух фаз: фазы с кубической решеткой иттрий-алюминиевого граната и фазы с гексагональной решеткой (YAlO3), что не позволяет обеспечить стабильное получение материала с высоким светопропусканием.

Заявленные молярные составы вводимых компонентов (скандия и алюминия) обеспечивают получение материала с высокими эксплуатационными характеристиками, такими как термостойкость, теплопроводность, диэлектрическая проницаемость, прочность.

Пример 1

Для синтеза иттрий-алюминиевого граната, легированного эрбием, в качестве осаждаемого компонента используют насыщенный раствор солей хлорида иттрия с чистотой не менее 99,9%, хлорида скандия с чистотой не менее 99,9%, хлорида алюминия с чистотой не менее 99,95%, хлорида эрбия с чистотой не менее 99,99%. В качестве осаждающего вещества используется охлажденный водный раствор аммиака (25% концентрации, квалификации ОСЧ). Осаждение проводят методом распыления насыщенного раствора солей через форсунку стеклянного реактора потоком сжатого воздуха. Осажденную смесь оксигидратов отфильтровывают и высушивают. После прокаливания пробы образца оксигидратов определяют структурную формулу матрицы и рассчитывают фактический дефицит алюминия в соединении.

К полученной смеси оксигидратов иттрия, алюминия, скандия, эрбия добавляют компенсирующую добавку в виде гидроксида алюминия, предварительно полученную методом обратного гетерофазного осаждения. Гидроксид алюминия получают путем распыления насыщенного раствора хлорида алюминия (чистота хлорида алюминия не менее 99,9%) в охлажденный водный раствор аммиака, полученную суспензию фильтруют, промывают до рН=7, сушат при 70°С в течении 2 часов, затем измельчают в планетарной мельнице в течение 1-го часа в спиртовой среде, после чего суспензию снова сушат, порошок просеивают через сито 100 мкм.

Полученные порошки оксигидратов и компенсирующую добавку смешивают в стехиометрическом соотношении, исходя из данных рентгенофазового, ИСП-МС анализов, и измельчают смесь в спиртовой среде с подобранным количественным соотношением жидкой и твердой фаз в течение 1 часа в планетарной мельнице с использованием размольных стаканов и мелющих тел из диоксида циркония. Термообработку полученного прекурсора осуществляют в электропечи при температуре 1200°С.

Из полученной смеси керамического порошка методом полусухого прессования при давлении прессования 100 МПа формуют компакты. В качестве временной технологической связки используют 5% водный раствор поливинилового спирта (или раствор парафина в четыреххлористом углероде с концентрацией 6 масс. %). Временную технологическую связку удаляют при нагревании компактов в электропечи при температуре 1400°С в течение 1,5 часов.

Компакты спекают в вакуумной печи с вольфрамовыми нагревателями при температуре 1800-1850°С в течение 10 часов. Давление остаточных газов 5⋅10-5 - 5⋅10-7 мм рт. ст. Полученные керамические заготовки после вакуумного спекания отжигают на воздухе в атмосферной печи при температуре 1400°С в течение 10 часов, затем шлифуют и полируют.

Полученный материал имеет светопропускание 65-70%, плотность 99,85% от теоретической (таблица 1, образец 1).

Пример 2

Для синтеза иттрий-алюминиевого граната, легированного иттербием, в качестве осаждаемого компонента используют горячий раствор следующих солей: хлорид иттрия с чистотой не менее 99,9%, хлорид скандия с чистотой не менее 99,9%, хлорид алюминия с чистотой не менее 99,95%, хлорид иттербия с чистотой не менее 99,99%. В качестве осаждающего вещества используется охлажденный водный раствор аммиака 25% концентрации, квалификации ОСЧ. Осаждение проводят методом распыления насыщенного раствора солей через форсунку стеклянного реактора потоком сжатого воздуха.

Осажденную смесь оксигидратов отфильтровывают, высушивают, измельчают в планетарной мельнице в спиртовой среде в течение 3-4 часов с подобранным количественным соотношением жидкой и твердой фаз, используя стаканы и мелющие тела из диоксида циркония, стабилизированного иттрием. Прокаливание осуществляют в электропечи при температуре 1200-1250°С.

Второй компонент (компенсирующая добавка) в виде гидроксида алюминия получают методом обратного гетерофазного осаждения. Используется горячий раствор хлорида алюминия с чистотой не менее 99,9%. В качестве осаждающего вещества используют охлажденный водный раствор аммиака 25% концентрации, квалификации ОСЧ. Полученный осадок оксигидрата алюминия фильтруют, сушат, измельчают в спиртовой среде в планетарной мельнице в течение 4-х часов, суспензию сушат, порошок просеивают через сито 100 мкм.

Полученные порошки смешивают в определенном стехиометрическом соотношении, исходя из данных рентгенофазового анализа. Из полученной смеси формуют компакты методом полусухого прессования при давлении прессования 100 МПа. В качестве временной технологической связки используют 5% раствор поливинилового спирта (или раствор парафина в четыреххлористом углероде с концентрацией 6 масс. %). Временную технологическую связку удаляют при нагревании компактов в электропечи при температуре 1400°С в течение 1,5 часов.

Компакты спекают в вакуумной печи с вольфрамовыми нагревателями при температуре 1800-1850°С в течение 10 часов. Давление остаточных газов 5⋅10-5 - 5⋅10-7 мм рт. ст. Полученные керамические заготовки после вакуумного спекания отжигают на воздухе в атмосферной печи при температуре 1400°С в течение 10 часов, затем шлифуют и полируют.

Полученный материал имеет светопропускание 65 - 70%, плотность 99,85% от теоретической (таблица 1, образец 4).

Пример 3

Операции получения двух компонентов производятся, как в примере 4.

Полученные порошки смешивают в определенном стехиометрическом соотношении, исходя из данных рентгенофазового анализа. Из полученной смеси формуют компакты методом полусухого прессования при давлении прессования 100 МПа. В качестве временной технологической связки используют парафин в количестве 4-6 масс. %. Временную технологическую связку удаляют при нагревании компактов в электропечи при температуре 1400°С в течение 1,5 часов.

Компакты спекают в вакуумной печи с вольфрамовыми нагревателями при температуре 1800-1850°С в течение 20 часов. Давление остаточных газов 5⋅10-5 - 5⋅10-7 мм рт. ст. Полученные керамические заготовки после вакуумного спекания отжигают на воздухе в атмосферной печи при температуре 1400°С в течение 10 часов, затем шлифуют и полируют.

Полученный материал имеет светопропускание 70-75%, плотность 99,85% от теоретической (таблица 1, образец 5).

Полученные образцы керамического материала, изготовленные в соответствии с заявленным способом, имеют стабильные эксплуатационные характеристики:

- диэлектрическая проницаемость при комнатной температуре и частоте 106 Гц - 11,8, тангенс угла диэлектрических потерь - 1⋅10-4;

- термостойкость при теплосмене 1200°С - воздух - 28-30 циклов, при теплосмене 1000°С - вода - 18-20 циклов;

- теплопроводность 9 Вт/м⋅К;

- предел прочности керамики при изгибе 320 МПа.

Предложенный способ обеспечивает получение прозрачного керамического материала при температуре термообработки 1800-1900°С. При этом материал обладает светопропусканием в диапазоне от 400 нм до 760 нм до 75%.

Заявленный прозрачный керамический материал может быть использован в качестве подложек для микросхем, оболочек натриевых ламп высокого давления, для изоляторов в термоэмиссионных преобразователях и в оптоэлектронике, а при введении в него ионов-активаторов (Nd3+, Eu3+, Cr3+ и др.) материал эффективен в качестве рабочей среды твердотельного лазера.

Сопоставительный анализ заявляемого изобретения показал, что совокупность существенных признаков заявленного материала и способа его получения не известна из уровня техники и значит, соответствует условию патентоспособности «Новизна».

В уровне техники не было выявлено признаков, совпадающих с отличительными признаками заявленного изобретения и влияющих на достижение заявленного технического результата, поэтому заявленное изобретение соответствует условию патентоспособности «Изобретательский уровень».

Приведенные сведения подтверждают возможность применения заявленного материала и способа его получения, который может быть использован в качестве подложек для микросхем, оболочек натриевых ламп высокого давления, для изоляторов в термоэмиссионных преобразователях и в оптоэлектронике, и поэтому соответствует условию патентоспособности «Промышленная применимость».

Похожие патенты RU2705848C1

название год авторы номер документа
Неорганический поликристаллический сцинтиллятор на основе Sc, Er:ИАГ и способ его получения 2019
  • Лукин Евгений Степанович
  • Попова Нелля Александровна
  • Лучков Андрей Анатольевич
RU2717158C1
Способ уменьшения размеров частиц и степени агломерации на стадии синтеза исходных прекурсоров при получении алюмоиттриевого граната 2018
  • Голота Анатолий Федорович
  • Тарала Виталий Алексеевич
  • Чикулина Ирина Сергеевна
  • Малявин Федор Федорович
  • Шама Марина Сергеевна
RU2700074C1
Комплексный способ получения малоагломерированных высокостехиометричных наноразмерных порошков прекурсора на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов 2019
  • Голота Анатолий Федорович
  • Чикулина Ирина Сергеевна
  • Вакалов Дмитрий Сергеевич
  • Малявин Федор Федорович
  • Кравцов Александр Александрович
RU2721548C1
Способ получения высокостехиометричных наноразмерных материалов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов 2018
  • Голота Анатолий Федорович
  • Медяник Евгений Викторович
  • Лапин Вячеслав Анатольевич
  • Евтушенко Екатерина Александровна
  • Чикулина Ирина Сергеевна
  • Штаб Александр Владимирович
  • Малявин Федор Федорович
  • Прокопенко Любовь Дмитриевна
RU2689721C1
Способ получения нанопорошка иттрий-алюминиевого граната 2020
  • Абиев Руфат Шовкет Оглы
  • Здравков Андрей Викторович
  • Кудряшова Юлия Сергеевна
RU2741733C1
Способ получения нанопорошка иттрий-алюминиевого граната 2021
  • Абиев Руфат Шовкет Оглы
  • Здравков Андрей Викторович
  • Кудряшова Юлия Сергеевна
RU2761324C1
Способ получения малоагломерированных высокостехиометричных наноразмерных порошков прекурсора на основе иттрий-алюминиевого граната с катионами редкоземельных элементов 2018
  • Голота Анатолий Федорович
  • Чикулина Ирина Сергеевна
  • Вакалов Дмитрий Сергеевич
  • Лапин Вячеслав Анатольевич
  • Малявин Федор Федорович
  • Медяник Евгений Викторович
  • Тарала Виталий Алексеевич
  • Евтушенко Екатерина Александровна
RU2699500C1
ПРОЗРАЧНЫЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2011
  • Лукин Евгений Степанович
  • Макаров Николай Александрович
  • Попова Нелля Александровна
  • Лемешев Дмитрий Олегович
RU2473514C2
Способ получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов 2018
  • Лукин Евгений Степанович
  • Попова Нелля Александровна
  • Павлюкова Лиана Тагировна
  • Жуков Александр Васильевич
  • Чижевская Светлана Владимировна
  • Лучков Андрей Анатольевич
  • Куликов Никита Алексеевич
RU2700062C1
Способ получения высокостехиометричного наноразмерного прекурсора для синтеза твердых растворов иттрий-алюминиевого граната с оксидами редкоземельных элементов 2018
  • Чикулина Ирина Сергеевна
  • Медяник Евгений Викторович
  • Лапин Вячеслав Анатольевич
  • Тарала Людмила Викторовна
  • Зырянов Виктор Саввович
  • Евтушенко Екатерина Александровна
  • Голота Анатолий Федорович
  • Вакалов Дмитрий Сергеевич
RU2707840C1

Реферат патента 2019 года Однофазный поликристаллический иттрий-алюминиевый гранат, активированный эрбием, иттербием, и способ его получения

Изобретение относится к области получения керамики на основе иттрий-алюминиевого граната (ИАГ), активированного редкоземельными элементами: эрбием или иттербием, используемой в качестве подложек для микросхем, оболочек натриевых ламп высокого давления, для изоляторов в термоэмиссионных преобразователях и в оптоэлектронике. Способ изготовления материала включает синтез гидроксидов иттрия, скандия, алюминия и эрбия или иттербия методом совместного осаждения солей YCl3*6H20, AlCl3*6H2O и ErCl3⋅6Н2О или YbCl3*6H2O в стехиометрическом соотношении с добавлением хлорида скандия в количестве 20 мол.% сверх стехиометрии; измельчение и прокаливание при температуре 1200-1250оС; синтез компенсирующей добавки Al(ОН)3; совместное измельчение гидроксидов и компенсирующей добавки в планетарной мельнице; просев; формование компакта с последующим вакуумным спеканием и отжигом на воздухе. Компенсирующую добавку в виде субмикронного порошка гидроксида алюминия с размером частиц менее 1 микрона, в количестве от 5 до 10 масс. % на стадии измельчения порошка в планетарной мельнице вводят на основании данных рентгенофазового анализа и данных масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС анализ). Изобретение приводит к получению стабильного однофазного материала, обладающего высокими эксплуатационными характеристиками: светопропусканием, термостойкостью, теплопроводностью, диэлектрической проницаемостью и прочностью. 2 н.п. ф-лы, 1 табл., 3 пр.

Формула изобретения RU 2 705 848 C1

1. Однофазный поликристаллический иттрий-алюминиевый гранат (ИАГ), активированный эрбием или иттербием, с формулой соединения Y1,39-2,88ME0,03÷1,5Sc0,29÷0,56A14,55-4,8O12, где ME это Еr или Yb.

2. Способ получения однофазного поликристаллического иттрий-алюминиевого граната по п. 1, активированного эрбием или иттербием, который включает: растворение исходных прекурсоров - хлоридов иттрия, алюминия, эрбия, иттербия, взятых в стехиометрическом соотношении, и хлорида скандия в количестве 20 мол. % сверх стехиометрии граната; совместное осаждение; фильтрацию; вакуумную сушку; измельчение в планетарной мельнице; просев; прокаливание при температуре 1200-1250°С в течение 1-3 часов; добавление расчетного количества субмикронного гидроксида алюминия с размером частиц менее 1 мкм в зависимости от содержания примесных фаз перовскита (YAP) и мартенсита (YAM) в смесь оксидов; измельчение в планетарной мельнице в течение 1-2 часов; формование компакта с использованием временного связующего; последующую термообработку для удаления связующего; вакуумное спекание керамических компактов при температуре 1800-1900°С; отжигание компактов на воздухе при температуре 1300-1400°С; шлифовку и полировку, при этом предпочтительно гидроксид алюминия с размером частиц менее 1 микрона получать путем измельчения в спиртовом растворе в планетарной мельнице в течение 1-2 часов.

Документы, цитированные в отчете о поиске Патент 2019 года RU2705848C1

Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
RU 2009115895 A, 10.11.2010
ПРОЗРАЧНЫЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2011
  • Лукин Евгений Степанович
  • Макаров Николай Александрович
  • Попова Нелля Александровна
  • Лемешев Дмитрий Олегович
RU2473514C2
Планшет для производства хронометражных работ 1927
  • Савельев В.В.
SU17872A1
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
CN 102060539 A, 18.05.2011.

RU 2 705 848 C1

Авторы

Голота Анатолий Федорович

Вакалов Дмитрий Сергеевич

Евтушенко Екатерина Александровна

Кичук Станислав Николаевич

Тарала Людмила Викторовна

Малявин Федор Федорович

Прокопенко Любовь Дмитриевна

Чикулина Ирина Сергеевна

Шама Марина Сергеевна

Даты

2019-11-12Публикация

2018-08-07Подача