ЭПОКСИДНЫЙ КОМПАУНД, НАПОЛНЕННЫЙ БИОГЕННЫМ КРЕМНЕЗЕМОМ Российский патент 2019 года по МПК C08L63/00 C08K3/36 B82Y30/00 

Описание патента на изобретение RU2705956C1

Изобретение относится к разработке эпоксидного компаунда с наноструктурированными продуктами переработки растений кремнефилов для получения высокопрочных, теплостойких композиционных материалов с возможностью применения в различных отраслях промышленности: аэрокосмической, автомобиле- и судостроении, строительстве, лакокрасочной промышленности, а также для изготовления различных изделий из композиционных материалов.

Описывается полимерный эпоксидный компаунд, включающий эпоксидную диановую смолу, ангидридный отвердитель - изометилтетрагирофталевый ангидрид, ускоритель - 2,4,6-трис(диметиламинометил)фенол и модифицирующий порошок - биогенный кремнезем (БК), полученный методами озоления и осождения [RU 2018117916]. Применяемые в качестве добавки кремнеземы характеризуются размером частиц до 30 нм, удельной поверхностью 240-260 м2/г, общим объемом пор – 44 см3/г, средним радиусом пор 8,29 А.

Наполненный порошками биогенного кремезема эпоксиполимерный композиционный материал обладает повышенной механической прочностью и высокой температурой стеклования.

Несмотря на достигнутые результаты ученых и производителей в области полимерного материаловедения, эпоксидные композиты на основе наиболее широко применяемого эпоксидного олигомера марки ЭД-20 имеют недостаточную теплостойкость (100-110оС) и деформативность.

В связи с этим в последние годы появляется много работ, посвященных усовершенствованию систем отверждения, улучшения прочностных свойств за счет химической модификации эпоксидных связующих. При этом рассматриваются широкие возможности регулирования свойств за счет введения в композиции наполнителей, в том числе нанопорошков различной природы.

Нанопорошок аморфного кремнезема обладает высокой химической активностью и на этом основано его широкое применение как наполнителя и модификатора. Анализ мирового рынка синтетического (осажденного и пирогенного) аморфного кремнезёма показывает наличие целого ряда технических наименований и торговых марок с характерными физико-химическими параметрами, например, «Аэросил», «Таркосил» и «белая сажа». Тем не менее, получение пирогенного кремнезёма (содержание основного вещества, SiO2, 99.5% и выше) требует больших энергозатрат и защитных мер по взрывобезопасности. Осаждённый кремнезём (содержание SiO2 варьирует в диапазоне 60.0–90.0%) получают, как правило, из «жидкого стекла» (Na2SiO3), что в техническом плане немного проще и безопаснее, но самым простым способом является получение кремнезема из растительной биомассы или ее отходов. Способ получения определяет значимые и эффективные свойства конечного продукта: размер и форму частиц, наличие или отсутствие пор и химические свойства поверхности.

Известны работы [RU 2478680 опубл. 10.04.2013; US 8722838 опубл. 13.05.2014] посвященных эпоксидным клеевым композициям, где используется аппретированный синтетический диоксид кремния, но не показано влияние чистого кремнезема на физико – механические характеристики, в том числе и адгезионные свойства.

Наиболее близким аналогом [Т. Брусенцева, К. Зобов, А. Филиппов, Д. Базарова, С. Лхасаранов, А. Чермошенцева, В. Сызранцев Введение нанопорошков и механические свойства материалов на основе эпоксидных смол. // Наноиндустрия. Вып.3. 2013 г. с. 24-29.] нашему изобретению является эпоксидная композиция, содержащая эпоксидный олигомер марки DER-331, отвердитель - изо-метилтетрагидрофталевый ангидрид (изо-МТГФА) и нанопорошок диоксида кремния марки «Таркосил», при массовом соотношении эпоксидная смола DER-331:изо-МТГФА – 100:80.

Диоксид кремния марки «Таркосил» - синтетический кремнезем, полученный пирогенным способом. Такие кремнеземы характеризуются высокой кристалличностью и гидрофобностью для перевода их в более реакционоспособное (аморфное) состояние проводят энергоемкий процесс аморфизации. В связи с этим недостатком аналога является то, что поверхность частиц диоксида кремния не достаточно развита, т.е. удельная поверхность низка из-за чего прочностные характеристики низкие, а теплостойкость при этом не исследована.

Биогенный кремнезем характеризуется аморфным состоянием и обладает высокой реакционной способностью за счет природной гидрофильности, а также обладает развитой поверхностью характеризующейся удельной поверхностью 240-260 м2/г, общим объемом пор – 44 см3/г, средним радиусом пор 8,29 А.

Российскими специалистами разработаны способы получения высокочистого (до 99.99%) аморфного диоксида кремния из рисовой шелухи [RU 2144498; RU 2161124; RU 2245300; RU 2307070; RU 2533459; RU 2525087; RU 2436730; RU 2394764; RU 2593861; RU 2018117916], как в периодическом, так и непрерывном безотходном, энергосберегающем и экологически чистом процессе, но нашли применение только в производстве резины, так называемые «зеленые» шины.

Задачей изобретения является создание новых композиционных материалов с применением биогенного кремнезема, полученного методами осаждения и озоления из кремнийсодержащей растительной массы [RU 2018117916].

Технический результат изобретения состоит в расширении арсенала эпоксидных компаундов с наноструктурированными наполнителями, полученными из растительного материала, имеющими эффективные размер и форму частиц, наличие пор и химические свойства поверхности. Эпоксидный компаунд в сравнении с аналогом имеет повышенные теплостойкость, предел прочности на растяжение и модуль упругости. Эпоксидный компаунд, наполненный биогенным кремнеземом, может найти применение в аэрокосмической, автомобиле- и судостроении, строительстве, лакокрасочной промышленности, а также для изготовления различных изделий из композиционных материалов.

Технический результат достигается тем, что эпоксидный компаунд, включающий эпоксиангидридную смесь с наполнителем в виде наноразмерных частиц, согласно изобретения содержит эпоксидный диановый олигомер марки ЭД-20, отвердитель - изо-метилтетрагидрофталевый ангидрид (изо-МТГФА), катализатор реакции полимеризации - 2,4,6,-трис(диметиламинометил)фенол, наполнитель в виде наночастиц биогенного кремнезема, характеризующийся удельной поверхностью 240-260 м2/г, общим объемом пор – 44 см3/г, средним радиусом пор - 8,29 А, полученного из растительного сырья, при этом эпоксиангидридную смесь и наполнитель берут при соотношении, масс.%

- эпоксиангидридную смесь 90-99;

- наночастицы биогенного кремнезема 1-10.

В частном случае в качестве наполнителя используют наночастицы биогенного кремнезема, полученные из растительного сырья, а именно: БК 1 – полученный из рисовой шелухи методом озоления с содержанием кремнезема в озоле 86,0 % и насыпной плотностью 0,1319 г/см3 или БК 2 – полученный из хвоща лесного методом озоления с содержанием кремнезема в озоле 99,8 % и насыпной плотностью 0,2140 г/см3 или БК 3 – полученный из рисовой шелухи методом экстракции минеральной кислотой с последующим озолением с содержанием кремнезема в озоле 83,0% и насыпной плотностью 0,1500 г/см3 или БК 4 – полученный из хвоща лесного методом экстракции минеральной кислотой с последующим озолением с содержанием кремнезема в озоле 99,5% и насыпной плотностью 0,1642 г/см3 или БК 5 – полученный из рисовой шелухи методом щелочной экстракции с последующим осаждением с содержанием кремнезема в озоле 76,0% и насыпной плотностью 0,1640 г/см3 или БК 6 – полученный из рисовой шелухи методом экстракции минеральной кислотой с последующей щелочной экстракцией и осаждением с содержанием кремнезема в озоле 98,6% и насыпной плотностью 0,2515 г/см3.

Способ осуществляется следующим образом:

Влияние биогенного кремнезема на эпоксиангидридную смесь исследовали методом дифференциальной сканирующей калориметрии (таблица 1).

В качестве эпоксиангидридной смеси использовали смесь эпоксидной диановой смолы (ЭД-20), изо-метилтетрагидрофталевого ангидрида (изо-МТГФА) и ускорителя (2,4,6,-трис(диметиламинометил)фенол) при соотношении 100:80:1,5 (масс.ч.)

В качестве наполнителя в эпоксиангидридный полимер применяли варианты модифицирующего порошка биогенного кремнезема, являющегося продуктом переработки растительной биомассы:

1. БК 1 – биогенный кремнезем, полученный из рисовой шелухи методом озоления с содержанием кремнезема в озоле 86.0 % и насыпной плотностью 0.1319 г/см3;

2. БК 2 – биогенный кремнезем, полученный из хвоща лесного методом озоления с содержанием кремнезема в озоле 99.8 % и насыпной плотностью 0.2140 г/см3;

3. БК 3 – биогенный кремнезем, полученный из рисовой шелухи методом экстракции минеральной кислотой с последующим озолением с содержанием кремнезема в озоле 83.0% и насыпной плотностью 0.1500 г/см3;

4. БК 4 – биогенный кремнезем, полученный из хвоща лесного методом экстракции минеральной кислотой с последующим озолением с содержанием кремнезема в озоле 99.5% и насыпной плотностью 0.1642 г/см3;

5. БК 5 – биогенный кремнезем, полученный из рисовой шелухи методом щелочной экстракции с последующим осаждением с содержанием кремнезема в озоле 76.0% и насыпной плотностью 0.1640 г/см3;

6. БК 6– биогенный кремнезем, полученный из рисовой шелухи методом экстракции минеральной кислотой с последующей щелочной экстракцией и осаждением с содержанием кремнезема в озоле 98.6% и насыпной плотностью 0.2515 г/см3;

Применяемые в качестве наполнителя кремнеземы характеризуются размером частиц до 30 нм, удельной поверхностью 240-260 м2/г, общим объемом пор – 44 см3/г, средним радиусом пор 8,29 А.

Предварительно готовили смесь эпоксидного связующего состава - эпоксидная диановая смола ЭД-20 (100 мас.%), изо-МТГФА (80 мас.%), ускоритель 2,4,6,-трис(диметиламинометил)фенол (1.5 мас.%). В полученную смесь вводили наполнители (исследуемые образцы биогенного кремнезема) в количестве 1-10 мас.% от общей массы композиции. Смешение компонентов проводили при температуре 70-90оС, гомогенизация систем достигалась путем диспергирования частиц наполнителя в низковязком отвердителе с помощью ультразвукового генератора IL–10-0.1 с частотой 22 кГц и мощностью 1000 Вт с последующим смешиванием со смолой и другими компонентами. Отверждение композиций проводилось по ступенчатому режиму при температуре: 120оС - 1 ч и 160оС - 3 ч.

Исследование кинетики отверждения эпоксиполимерной матрицы и температуры стеклования проводили методом дифференциальной сканирующей калориметрии (ДСК) на приборе Shimadzu DSC-60. Применяемый для экспериментов биогенный кремнезем характеризуется аморфным состоянием и обладает высокой реакционной способностью за счет природной гидрофильности, обладает развитой поверхностью характеризующейся удельной поверхностью 240-260 м2/г, общим объемом пор – 44 см3/г, средним радиусом пор 8,29 А. По данным ДСК установлено, что введение биогенного кремнезема на стадии полимеризации олигомера марки ЭД-20 с изо-метилтетрагидрофталевам ангидридом снижает энергию активации процесса до 30 %, за счет гидрофильных центров наночастиц изменяющих стехиометрию реакции, тем самым обеспечивая более плотную сшивку и как следствие повышенные физико-механических свойств материалов.

Тепловые эффекты при поликонденсации ЭД-20 с изо-МТГФА в присутствии биогенного кремнезема, определены на основании данных ДСК полученных в интервале температур 25-250оС со скоростью нагрева 5оС/мин. Для расчета энергии активации применяли режим: интервал температур - 25-250оС, скорость нагрева - 3, 5, 10оС/мин.

Энергию активации реакции взаимодействия ЭД-20, изо-МТГФА и биогенного кремнезема рассчитывали методом Киссинджера [KissingerH.E. Reaction kinetics indifferential thermalanalysis.Anal.Chem. 1957. V. 29, N. 11. P. 1702–1706; Blaine R.L., Kissinger H.E. Homer Kissinger and the Kissinger equation. Thermochimica Acta. 2012. V.540. P. 1-6. DOI:10.1016/j.tca.2012.04.008].

Температуру стеклования полученных полимеров определяли по кривым ДСК (режим: от 25 до 300оС, скорость нагрева - 10оС/мин).

Механические свойства полученных композиционных материалов (разрушающее напряжение при разрыве) исследовали по стандартным методикам [ГОСТ-11262-80] с помощью испытательной машины ИР 5057-60.

Реализация способа получения новых композиционных материалов позволило за счет ведения модификатора уменьшить энергию активации полимеризации эпоксидного полимера, а также повысить механическую прочность и температуру стеклования готового материала.

Примеры осуществления.

Пример 1.

Предварительно готовят эпоксиангидридную смесь. Берут:

- эпоксидная диановая смола (ЭД-20) – 100 масс.ч;

- изо-метилтетрагидрофталевый ангидрид (изо-МТГФА) -80 масс.ч;

- ускоритель (2,4,6,-трис(диметиламинометил)фенол) – 1,5 масс.ч.

Компоненты перемешивают механической мешалкой в течение 30 мин.

Полученную смесь наполняют биогенным кремнеземом БК 1 с размерами частиц 30 нм. Берут 99.0 масс.%. приготовленной эпоксиангидридной смеси и добавляют 1 масс.%. БК 1 механически смешивают при температуре 70-90 оС с последующей гомогенизацией смеси ультразвуком при помощи ультразвукового генератора IL-10-0,1 при частоте 22 кГц и мощности 1000 Вт в течение 5 мин. После чего эту смесь заливают в металлические формы и отверждают по ступенчатому режиму: 120оС – 1ч., 160оС – 3ч. Свойства и характеристики полученной композиции приведены в табл. 2.

Пример 2.

Эпоксиангидридную смесь готовят по примеру 1.

Полученную смесь наполняют биогенным кремнеземом БК 1 с размерами частиц 30 нм. Берут 95.0 масс.%. приготовленной эпоксиангидридной смеси и добавляют 5 масс.%. БК 1 механически смешивают при температуре 70-90 оС с последующей гомогенизацией смеси ультразвуком при помощи ультразвукового генератора IL-10-0,1 при частоте 22 кГц и мощности 1000 Вт в течение 5 мин. После чего эту смесь заливают в металлические формы и отверждают по ступенчатому режиму: 120оС – 1ч., 160оС – 3ч. Свойства и характеристики полученной композиции приведены в табл. 2.

Пример 3.

Эпоксиангидридную смесь готовят по примеру 1.

Полученную смесь наполняют биогенным кремнеземом БК 1 с размерами частиц 30 нм. Берут 90.0 масс.%. приготовленной эпоксиангидридной смеси и добавляют 10 масс.%. БК 1 механически смешивают при температуре 70-90 оС с последующей гомогенизацией смеси ультразвуком при помощи ультразвукового генератора IL-10-0,1 при частоте 22 кГц и мощности 1000 Вт в течение 5 мин. После чего эту смесь заливают в металлические формы и отверждают по ступенчатому режиму: 120оС – 1ч., 160оС – 3ч. Свойства и характеристики полученной композиции приведены в табл. 2.

Пример 4, 7, 10, 13, 16 осуществляют аналогично примеру 1 с добавлением биогенного кремнезема с размерами частиц 30 нм (БК 2, либо БК 3, либо БК 4, либо БК 5, либо БК 6).

Пример 5, 8, 11, 14, 17 осуществляют аналогично примеру 2 с добавлением биогенного кремнезема с размерами частиц 30 нм (БК 2, либо БК 3, либо БК 4, либо БК 5, либо БК 6).

Пример 6, 9, 12, 15, 18 осуществляют аналогично примеру 3 с добавлением биогенного кремнезема с размерами частиц 30 нм (БК 2, либо БК 3, либо БК 4, либо БК 5, либо БК 6).

Методом дифференциальной сканирующей калориметрии установлено, что введение биогенного кремнезема на стадии полимеризации олигомера марки ЭД-20 с изо-метилтетрагидрофталевам ангидридом снижает энергию активации процесса до 30 %. В области наполнения от 1 до 5 мас. % предел прочности на растяжение и модуль упругости Юнга гибридного композиционного материала повышаются на 15 %, теплостойкость композита увеличивается на 22,7 %.

Таким образом, показана перспективность использования биогенного кремнезема различного растительного происхождения в качестве модифицирующей добавки эпоксиполимерных композиционных материалов.

Таблица 1

Термодинамические характеристики модифицированной эпоксиангидридной смеси

Модификатор Тonset,°С Тpeak,°С Тend,°С Q, Дж/г Еа, кДж/моль Эпоксиангидридный полимер 95 137 164 247 106 БК 1 119.2 137.3 150.5 327.9 75.7 БК 2 122.6 140.4 157.3 248.6 73.8 БК 3 116.9 138.5 155.3 363.8 73.4 БК 4 130.8 149.5 164.1 347.3 72.3 БК 5 114.0 135.0 150.3 336.2 75.5 БК 6 117.4 135.9 149.9 328.0 75.7

Таблица 2

Характеристики эпоксидного компаунда с различным содержанием биогенного кремнезема, полученного различными способами

№ примера Модификатор Концентрация БК, мас. % Прочностные характеристики Тс, оС σразрыв, МПа Е/Ео, ГПа прототип 1,6 Эпоксиангидридный полимер - - 40 1 110 1 БК 1 1 43 1.67 - 2 5 35 1.70 - 3 10 23 1.69 123 4 БК 2 1 43 1.54 - 5 5 43 1.63 - 6 10 40 1.69 117 7 БК 3 1 33 1.67 - 8 5 42 1.66 - 9 10 42 1.57 118 10 БК 4 1 46 1.60 - 11 5 43 1.63 - 12 10 40 1.69 120 13 БК 5 1 45 1.66 - 14 5 30 1.60 - 15 10 28 1.59 139 16 БК 6 1 45 1.69 - 17 5 33 1.66 - 18 10 26 1.55 135

Похожие патенты RU2705956C1

название год авторы номер документа
Эпоксидная композиция 2016
  • Белых Анна Геннадьевна
  • Васенева Ирина Николаевна
  • Ситников Петр Александрович
  • Рябков Юрий Иванович
RU2633905C1
ЭПОКСИДНАЯ КОМПОЗИЦИЯ ДЛЯ ВЫСОКОПРОЧНЫХ, ЩЕЛОЧЕСТОЙКИХ КОНСТРУКЦИЙ 2013
  • Белых Анна Геннадьевна
  • Васенева Ирина Николаевна
  • Ситников Петр Александрович
  • Рябков Юрий Иванович
  • Кучин Александр Васильевич
  • Фурсов Лев Валентинович
RU2536141C2
КОМПОЗИЦИЯ ДЛЯ ФОРМОВАНИЯ РЕЗЬБЫ И СТЕКЛОПЛАСТИКОВАЯ ТРУБА С РЕЗЬБОЙ, ИЗГОТОВЛЕННОЙ С ЕЕ ИСПОЛЬЗОВАНИЕМ 2011
  • Идрисов Искандер Гаязович
RU2460746C1
ЭПОКСИДНАЯ КОМПОЗИЦИЯ 2007
  • Куценко Геннадий Васильевич
  • Зиновьев Василий Михайлович
  • Зрайченко Любовь Ивановна
  • Бережная Ольга Николаевна
  • Горшкова Людмила Михайловна
RU2345106C1
ЭПОКСИДНАЯ КОМПОЗИЦИЯ С ПОВЫШЕННОЙ СТОЙКОСТЬЮ К ТЕРМОСТАРЕНИЮ 2013
  • Белых Анна Геннадьевна
  • Васенева Ирина Николаевна
  • Ситников Петр Александрович
  • Кучин Александр Васильевич
  • Чукичева Ирина Юрьевна
  • Федорова Ирина Витальевна
  • Буравлев Евгений Владимирович
RU2561088C2
Термореактивная композиция 1978
  • Задонцев Борис Григорьевич
  • Котляр Николай Андреевич
  • Берлин Альфред Анисимович
  • Харахаш Виктор Георгиевич
  • Малейкович Валентина Георгиевна
SU789547A1
1,2-БИС-(1-ГЛИЦИДИЛБЕНЗИМИДАЗОЛ-2-ИЛТИО)ЭТАН В КАЧЕСТВЕ СООТВЕРДИТЕЛЯ ЭПОКСИДНЫХ СМОЛ И 1,2-БИС-(БЕНЗИМИДАЗОЛ-2-ИЛТИО)ЭТАН КАК ПРОМЕЖУТОЧНЫЙ ПРОДУКТ В СИНТЕЗЕ 1,2-БИС-(1-ГЛИЦИДИЛБЕНЗИМИДАЗОЛ-2-ИЛТИО)ЭТАНА В КАЧЕСТВЕ СООТВЕРДИТЕЛЯ ЭПОКСИДНЫХ СМОЛ 1990
  • Коротких Н.И.
  • Козлов А.В.
  • Швайка О.П.
  • Кочергин Ю.С.
  • Кулик Т.А.
SU1743160A1
1-ГЛИЦИДИЛИМИДАЗОЛЫ В КАЧЕСТВЕ СООТВЕРДИТЕЛЕЙ ЭПОКСИДНЫХ СМОЛ 1990
  • Коротких Н.И.
  • Козлов А.В.
  • Швайка О.П.
  • Кочергин Ю.С.
  • Кулик Т.А.
SU1743158A1
СПОСОБ ПОЛУЧЕНИЯ ИЗО-МЕТИЛТЕТРАГИДРОФТАЛЕВОГОАНГИДРИДА 1969
SU255246A1
1-ГЛИЦИДИЛ-2-МЕТАЛЛИЛТИО-4,5-ДИФЕНИЛМИДАЗОЛ В КАЧЕСТВЕ СООТВЕРДИТЕЛЯ ЭПОКСИДНЫХ СМОЛ 1990
  • Коротких Н.И.
  • Козлов А.В.
  • Швайка О.П.
  • Кочергин Ю.С.
  • Кулик Т.А.
SU1743169A1

Реферат патента 2019 года ЭПОКСИДНЫЙ КОМПАУНД, НАПОЛНЕННЫЙ БИОГЕННЫМ КРЕМНЕЗЕМОМ

Изобретение относится к разработке эпоксидного компаунда с наноструктурированными продуктами переработки растений кремнефилов для получения высокопрочных теплостойких композиционных материалов с возможностью применения в различных отраслях промышленности: аэрокосмической, автомобиле- и судостроении, строительстве, лакокрасочной промышленности, а также для изготовления различных изделий из композиционных материалов. Предложен эпоксидный компаунд, включающий эпоксиангидридную смесь с наполнителем в виде наноразмерных частиц, который содержит эпоксидный диановый олигомер марки ЭД-20, отвердитель - изо-метилтетрагидрофталевый ангидрид (изо-МТГФА), катализатор реакции полимеризации - 2,4,6,-трис(диметиламинометил)фенол, наполнитель в виде наночастиц биогенного кремнезема, характеризующийся удельной поверхностью 240-260 м2/г, общим объемом пор – 44 см3/г, средним радиусом пор - 8,29 А, полученного из растительного сырья, при этом эпоксиангидридную смесь и наполнитель берут при соотношении, масс.%: эпоксиангидридную смесь 90-99; наночастицы биогенного кремнезема 1-10. Технический результат состоит в увеличении теплостойкости, предела прочности на растяжение и модуля упругости. 1 з.п. ф-лы, 2 табл., 18 пр.

Формула изобретения RU 2 705 956 C1

1. Эпоксидный компаунд, включающий эпоксиангидридную смесь с наполнителем в виде наноразмерных частиц, отличающийся тем, что содержит эпоксидный диановый олигомер марки ЭД-20, отвердитель - изо-метилтетрагидрофталевый ангидрид (изо-МТГФА), катализатор реакции полимеризации - 2,4,6,-трис(диметиламинометил)фенол, наполнитель в виде наночастиц биогенного кремнезема, характеризующийся удельной поверхностью 240-260 м2/г, общим объемом пор – 44 см3/г, средним радиусом пор - 8,29 А, полученного из растительного сырья, при этом эпоксиангидридную смесь и наполнитель берут при соотношении, масс.%:

- эпоксиангидридная смесь 90-99;

- наночастицы биогенного кремнезема 1-10.

2. Эпоксидный компаунд по п. 1., в котором используют наночастицы биогенного кремнезема, полученные из растительного сырья, а именно: БК 1, полученный из рисовой шелухи методом озоления с содержанием кремнезема в озоле 86,0 % и насыпной плотностью 0,1319 г/см3, или БК 2, полученный из хвоща лесного методом озоления с содержанием кремнезема в озоле 99,8 % и насыпной плотностью 0,2140 г/см3, или БК 3, полученный из рисовой шелухи методом экстракции минеральной кислотой с последующим озолением с содержанием кремнезема в озоле 83,0% и насыпной плотностью 0,1500 г/см3, или БК 4, полученный из хвоща лесного методом экстракции минеральной кислотой с последующим озолением с содержанием кремнезема в озоле 99,5% и насыпной плотностью 0,1642 г/см3, или БК 5, полученный из рисовой шелухи методом щелочной экстракции с последующим осаждением с содержанием кремнезема в озоле 76,0% и насыпной плотностью 0,1640 г/см3, или БК 6, полученный из рисовой шелухи методом экстракции минеральной кислотой с последующей щелочной экстракцией и осаждением с содержанием кремнезема в озоле 98,6% и насыпной плотностью 0,2515 г/см3.

Документы, цитированные в отчете о поиске Патент 2019 года RU2705956C1

RU 2056452 C1, 20.03.1996
ЭПОКСИДНАЯ КОМПОЗИЦИЯ ДЛЯ ВЫСОКОПРОЧНЫХ, ЩЕЛОЧЕСТОЙКИХ КОНСТРУКЦИЙ 2013
  • Белых Анна Геннадьевна
  • Васенева Ирина Николаевна
  • Ситников Петр Александрович
  • Рябков Юрий Иванович
  • Кучин Александр Васильевич
  • Фурсов Лев Валентинович
RU2536141C2
WO 2007081431 A1, 19.07.2007.

RU 2 705 956 C1

Авторы

Щербакова Татьяна Петровна

Васенева Ирина Николаевна

Рябков Юрий Иванович

Даты

2019-11-12Публикация

2018-11-27Подача