Способ изготовления изделий из жидкого токопроводящего материала в 3D-принтере Российский патент 2019 года по МПК B22D23/00 B33Y10/00 

Описание патента на изобретение RU2706270C1

Изобретение относится к изготовлению изделий в 3D принтере и может найти широкое применение в различных отраслях техники, таких как станкостроение, транспортное машиностроение, приборостроение и других.

Наиболее близким и выбранным в качестве прототипа является известный способ изготовления изделий из жидкого проводящего материала в 3D принтере, заключающийся в том, что печатающая головка имеет резервуар жидкого проводящего материала, окруженный электромагнитной катушкой. На эту катушку индуктивности подается импульс тока одного направления. Под влиянием этого электромагнитного импульса на жидкий электропроводящий материал действует радиально внутрь направленная сила, под действием которой из резервуара через выпускное отверстие выбрасывается капля жидкого проводящего материала. В результате серии импульсов серия капель падает на платформу согласно запрограммированному узору, и в процессе кристаллизации жидкого проводящего материала происходит формирование изделия. Так капля за каплей строится трехмерный предмет. (Patent US №2015/0273577 А1, опубликован 01.10.2015).

К недостаткам всех известных способов, реализующих принцип «капля по требованию», в том числе к технической проблеме, следует отнести их высокую сложность осуществления и, как следствие, дороговизну. Попытки использовать вместо капель сплошную струю терпели неудачу в силу неустойчивости (разрушения) струи малого сечения, требуемого для детального изготовления трехмерного предмета.

Технический результат от использования предполагаемого изобретения заключается в повышении скорости 3D печати и в уменьшении пористости материала изготавливаемых изделий за счет использования сплошной струи.

Поставленный технический результат достигается тем, что в способе изготовления изделий из жидкого токопроводящего материала в 3D - принтере, заключающемся в подаче жидкого токопроводящего материала из герметичного резервуара с нанесением на платформу по заданным координатам согласно запрограммированному узору с последующим отвердеванием посредством управления процессом кристаллизации в струе жидкого токопроводящего материала, подачу жидкого токопроводящего материала осуществляют сплошной струей.

На рисунке изображена схема реализации заявленного способа.

Способ изготовления изделий 1 из жидкого токопроводящего материала 2 в 3D - принтере, заключается в подаче жидкого токопроводящего материала 2 из герметичного резервуара 3 под управляемым давлением 4 (например, через выпускное отверстие 5) с нанесением на платформу 6 по заданным координатам согласно запрограммированному узору с последующим отвердеванием посредством управления процессом кристаллизации в струе 7 жидкого токопроводящего материала, при этом подачу жидкого токопроводящего материала в зону кристаллизации осуществляют сплошной струей.

Кристаллизация струи жидкого токопроводящего материала, свободно текущей во внешнее пространство из герметичного резервуара через выпускное отверстие, размером которого задается начальный диаметр струи, осуществляется под управлением текущего по струе электрического тока.

Как известно, при пропускании тока вдоль струи расплавленного металла возникают силы Ампера, приводящие к сжатию проводника. С другой стороны, температура кристаллизации для большинства металлов растет с ростом давления (Pant М.М. Pressure dependence of melting of meals // Physics of Earth and Planetary Interiors, 1978, V. 17, n. 2, pp. 14-15). Поэтому, если в области конца струи создать достаточно большое давление, то в этой области температура жидкого металла окажется ниже точки кристаллизации. Этим процессом можно управлять посредством изменения протекающего тока и, при создании соответствующих процедур, осуществлять трехмерную печать изделий с производительностью, определяемой только скоростью потока расплава.

Для получения численных оценок используется обычное стационарное уравнение магнитной гидродинамики - уравнения Навье - Стокса с магнитным членом (например, Tillack M.S., Morley N.B. Magnetohydrodynamics,. - NY, McGraw Hill 14th Edition (1998))

где ν - скорость, p - давление, η - вязкость, ρ - плотность, g - ускорение свободного падения, j - плотность тока и В - индукция магнитного поля.

Используя теорему о циркуляции (В=μμ0jr/2) и цилиндрические координаты для радиальной зависимости давления и интегрируя это уравнение по радиусу, получим

где С - постоянная интегрирования, не зависящая от магнитного поля (статическое давление Р0). Учитывая непрерывность электрического тока j(z)S(z)=I, получим для среднего давления по площади πR2(z)=S(z)

Уравнение для скорости с учетом непрерывности потока металла ρν0S0=ρν(z)S(z) решается, хотя решение выражается через функции Бесселя. Однако для получения оценочных соотношений между параметрами, можно рассмотреть упрощенную задачу, считая вязкость равной нулю. В этом случае уравнение представляет собой дифференциальную форму (d/dz) хорошо известного уравнения Бернулли (White F.M. Fluid Mechanics. - NY, McGraw Hill 7th Edition (2011)). При этом давление магнитного поля тока совпадает с плотностью энергии магнитного поля (как это и должно быть). Условия применимости данной гидродинамической модели определяются применимостью уравнения Бернулли. В итоге можно записать

Здесь p(z) - давление магнитного поля в сечении на высоте z.

На опыте можно управлять следующими величинами: полный электрический ток I, начальное сечение струи (сечение отверстия) S0, длина струи L, и давление Р0, которым будет задаваться начальная скорость ν0, которую саму можно считать управляемым параметром.

Для наших целей необходимо знать давление Р1 в конце струи как функцию управляющих параметров. Для этого в уравнение (8) подставим сечение в конце струи S1 на заданном расстоянии L, для чего воспользуемся уравнением Бернулли (3) в виде

где левая часть относится к верхней точке струи, а правая - к нижней, и сделана замена ν(L)=ν0S0/S1 согласно непрерывности потока. Теперь легко найти как S1

так и P1

где для упрощения вида формул введено обозначение

Поскольку наиболее важным в данной заявке является управление процессом кристаллизации, то необходимо рассмотреть тепловой режим струи жидкого металла под током, который определяется балансом четырех потоков тепла. Рассмотрим его в единицу времени для элемента струи высотой dz и радиусом R(z). В расплавленном состоянии металл теряет энергию за счет излучения в окружающую среду. Лучистая теплоотдача может быть оценена через закон Стефана - Больцмана как

dQ1=σT42πR.

Тепловыделение по закону Джоуля - Ленца

dQ2=I2dz/χS(z),

где χ - электропроводность.

Конвективный перенос тепла вдоль струи (вместе с металлом)

dQ3=ρcPν(z)S(z)dT=ρcPν0S0dT,

здесь учтено уравнение неразрывности потока.

Поток тепла Q4 за счет теплопроводности для всех металлов на несколько порядков меньше остальных потоков, поэтому им можно пренебречь.

В итоге уравнение для баланса тепла выглядит следующим образом

dQ2+dQ3-dQ1=0.

Это уравнение, переписанное следующим образом

не имеет аналитического решения, но может быть численно проинтегрировано, если явно определить функции S(z) и R(z) из предыдущих уравнений.

Осталось выяснить, существует ли диапазон параметров (ν0, I, S0, L), в котором можно, управляя током, управлять кристаллизацией расплава в конце струи. Для этого надо оценить величины давления, необходимые для сдвига вверх температуры кристаллизации. Как известно (H. Schlosser, P. Vinet, J. Ferrante, Pressure dependence of the melting temperature of metals, Physical Review В - Condensed Matter, 1989, 40, 5929), для этого требуются высокие давления, порядка сотен килобар. Оценки показывают, что для изменения температуры плавления на 1 К требуется давление около 100 кбар.

Другое условие следует из баланса тепловых потоков. Если ток, обеспечивающий требуемое давление, создает тепловой поток I2dz/χS1, превышающий потери тепла σT42π(S1/π)1/2dz, то, чтобы нагрев был все же меньшим, чем увеличение температуры кристаллизации за счет давления, следует потребовать, чтобы начальная скорость потока в конвективном члене была больше некоторой минимальной скорости v0>v0min.

Для выяснения возможности реализации описанного механизма кристаллизации надо знать две функциональные зависимости: во-первых, ток Imin, при котором давление достаточно для увеличения температуры кристаллизации на величину δТ и, во-вторых, ток Imax, при котором вызываемый им нагрев еще компенсируется набегающим потоком более холодного расплава.

Выполненные оценки (В.Б. Ошурко, А.М. Мандель, Е.Е. Карпова, А.А. Шарц, Магнитогидродинамический принцип 3D - печати для расплавов цветных металлов, в печати, принят в ЖТФ) показывают, что существует довольно обширная область, где Imax>Imin. Таким образом, существует широкий диапазон реалистичных значений параметров, при которых может быть реализован описанный метод 3D - печати.

И хотя пока это только принципиальный результат, но эти значения (скорости и тока) можно существенно изменять, увеличивая магнитную проницаемость расплава путем добавки ферро магнитного порошка.

При этом:

- объект, воплощающий заявленное техническое решение, при его осуществлении относится к управлению 3D - печатью для расплавов металлов и может найти широкое применение в различных отраслях, таких как станкостроение, транспортное машиностроение, приборостроение и других;

- для заявленного объекта в том виде, как он охарактеризован в независимом пункте формулы изобретения, подтверждена возможность его осуществления;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует требованиям условий патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Похожие патенты RU2706270C1

название год авторы номер документа
Способ управления с помощью тока процессом кристаллизации жидкого токопроводящего материала в 3D-принтере 2018
  • Мандель Аркадий Михайлович
  • Ошурко Вадим Борисович
  • Шарц Александр Александрович
RU2699890C1
Способ послойной 3D-печати изделий из металла за счёт явления шнурования тока 2019
  • Ошурко Вадим Борисович
  • Мандель Аркадий Михайлович
  • Шарц Александр Александрович
  • Аристархов Павел Владимирович
  • Соломахо Кирилл Георгиевич
RU2725483C1
3D-принтер 2022
  • Даутов Василий Рафаилович
RU2800191C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРИВОДА С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ (ЭПФ) 2021
  • Шишковский Игорь Владимирович
  • Дубинин Олег Николаевич
  • Тихонов Андрей Александрович
RU2794245C1
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОЗОЛЯ 2016
  • Габяш Тимур Эмильевич
RU2650820C1
СПОСОБ 3D-ПЕЧАТИ ИЗДЕЛИЙ АКТИВИРОВАННОЙ УЛЬТРАЗВУКОМ СТРУЕЙ ПОРОШКОВОГО МАТЕРИАЛА, ПЛАСТИФИЦИРОВАННОГО ТЕРМОПЛАСТИЧНОЙ СВЯЗКОЙ 2021
  • Ситников Сергей Анатольевич
  • Рабинский Лев Наумович
  • Кравцов Дмитрий Александрович
RU2777114C1
СПОСОБ 3D ПЕЧАТИ СЕКЦИОНИРОВАННОЙ ПРОВОЛОКОЙ 2018
  • Кривенко Александр Сергеевич
  • Копейкин Алексей Викторович
RU2691017C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВОЛНОВОДНЫХ СВЧ-УСТРОЙСТВ И ЭЛЕМЕНТОВ НА 3D-ПРИНТЕРЕ МЕТОДОМ ПОСЛОЙНОГО НАПЛАВЛЕНИЯ НИТЕВОГО КОМПОЗИЦИОННОГО АБС-ПЛАСТИКА 2016
  • Зотеев Владимир Павлович
  • Классен Виктор Иванович
  • Левитан Борис Аркадьевич
  • Просвиркин Илья Александрович
RU2642791C1
СПОСОБ ТРЕХМЕРНОЙ ПЕЧАТИ ИЗДЕЛИЙ 2014
  • Турчин Максим Юрьевич
  • Чашкин Михаил Анатольевич
  • Минниханов Игорь Наилевич
RU2564604C1
Устройство высокоскоростной печатной головки для 3D-принтера, с возможностью цветной 3D-печати 2018
  • Кокорев Борис Сергеевич
RU2706134C2

Иллюстрации к изобретению RU 2 706 270 C1

Реферат патента 2019 года Способ изготовления изделий из жидкого токопроводящего материала в 3D-принтере

Изобретение относится к изготовлению изделий в 3D-принтере. Жидкий токопроводящий материал подают из герметичного резервуара на платформу по заданным координатам согласно запрограммированному узору. Отвердевание токопроводящего материала осуществляют в зоне кристаллизации. Подачу жидкого токопроводящего материала в зону кристаллизации осуществляют сплошной струей. Управление процессом кристаллизации токопроводящего материала в струе осуществляют путем изменения магнитной проницаемости расплава токопроводящего материала, осуществляемого путем добавки в струю ферромагнитного порошка. Обеспечивается повышение скорости 3D печати и уменьшение пористости материала изготавливаемых изделий за счет использования сплошной струи. 1 ил.

Формула изобретения RU 2 706 270 C1

Способ изготовления изделий из жидкого токопроводящего материала в 3D-принтере, включающий подачу жидкого токопроводящего материала из герметичного резервуара, нанесение его на платформу по заданным координатам согласно запрограммированному узору и последующее отвердевание в зоне кристаллизации при управлении процессом кристаллизации токопроводящего материала в струе, отличающийся тем, что подачу жидкого токопроводящего материала в зону кристаллизации осуществляют сплошной струей, а управление процессом кристаллизации осуществляют путем изменения магнитной проницаемости расплава токопроводящего материала, осуществляемого путем добавки в струю ферромагнитного порошка.

Документы, цитированные в отчете о поиске Патент 2019 года RU2706270C1

US 20150273577 A1, 01.10.2015
УСТРОЙСТВО ДЛЯ ПОДДЕРЖАНИЯ ПОСТОЯНСТВА УГЛА ПОГАСАНИЯ ВЕНТИЛЕЙ ОДНОФАЗНОГО ИНВЕРТОРА 0
SU170109A1
СПОСОБЫ, ИСПОЛЬЗУЮЩИЕ ВЫСОКОЭНЕРГЕТИЧЕСКИЕ ПОСТОЯННЫЕ МАГНИТЫ ДЛЯ ЭЛЕКТРОМАГНИТНОГО НАГНЕТАНИЯ, ТОРМОЖЕНИЯ И ДОЗИРОВАНИЯ РАСПЛАВЛЕННЫХ МЕТАЛЛОВ, ПОДАВАЕМЫХ В ЛИТЕЙНЫЕ МАШИНЫ 2002
  • Каган Валерий Г.
RU2291028C2
СПОСОБ ТРЕХМЕРНОЙ ПЕЧАТИ МЕТАЛЛАМИ И СМЕСЯМИ ПОРОШКООБРАЗНЫХ МАТЕРИАЛОВ 2015
  • Сайфуллин Ринат Назирович
RU2600154C2
WO 2009108913 A2, 03.09.2009.

RU 2 706 270 C1

Авторы

Мандель Аркадий Михайлович

Ошурко Вадим Борисович

Шарц Александр Александрович

Даты

2019-11-15Публикация

2018-06-21Подача