Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана и воздуха Российский патент 2019 года по МПК B01J23/40 B01J23/42 B01J23/46 B01J21/06 B01J37/02 C01B3/40 

Описание патента на изобретение RU2707880C1

Изобретение относится к каталитическому способу осуществления реакции парциального окисления диметоксиметана (ДММ) воздухом с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике. Например, в качестве топлива для питания топливных элементов различного назначения, в том числе и для топливных элементов, установленных на передвижных средствах. В настоящее время топливные элементы рассматриваются как альтернативный и экологически чистый источник электрической энергии.

Основным топливом для питания топливных элементов является водород или обогащенная по водороду газовая смесь, которая может быть получена посредством паровой и воздушной конверсии природного газа, бензина (ископаемые топлива) и спиртов.

Важно отметить, что ДММ является коррозионно-инертным и нетоксичным соединением. ДММ представляет собой жидкость, следовательно, легко хранится и транспортируется. Указанные факты позволяют рассматривать ДММ как перспективное сырье для получения водорода для питания топливных элементов.

Одним из наиболее эффективных способов получения водородсодержащего газа из ДММ является его паровая каталитическая конверсия:

СН3ОСН2ОСН3+4H2O=8Н2+3CO2

Данная реакция приводит к наибольшему содержанию водорода в смеси продуктов. В качестве катализаторов для этого процесса нами предлагались бифункциональные CuO-CeO2/γ-Al2O3 катализаторы [С.Д. Бадмаев, А.А. Печенкин, В.Д. Беляев, В.А. Собянин. Катализаторы и способ получения обогащенной по водороду газовой смеси из диметоксиметана. Патент РФ №2533608, B01J 21/04, С01В 3/38, 20.11.2014]. Практически полная конверсия ДММ на этих катализаторах достигается уже при температуре ~ 300°С, причем в получаемом водородсодержащем газе незначительное количество СО (<2 об. %). Однако недостатком процесса паровой конверсии ДММ является большое энергопотребление, связанное с испарением воды и осуществлением эндотермического процесса парового риформинга.

Напротив, реакция парциального окисления воздухом ДММ в синтез газ считается целесообразной с точки зрения энергозатрат, «водонезависимости» и быстроты запуска энергоустановки на базе твердооксидных топливных элементов. Кроме того, существенно упрощается технологическая схема энергоустановки, расширяются возможности их применения при отрицательных температурах, другими словами делают их более универсальными - пригодными для использования при любых природных и климатических условиях.

Исследование процесса парциального окисления ДММ в водородсодержащий газ или синтез-газ не проводилось вовсе. Брутто реакция получения водорода при помощи этого способа приведена ниже:

СН3ОСН2ОСН3+0,5О2=4Н2+3СО.

Задачей, на решение которой направлено настоящее изобретение, является разработка эффективного катализатора в отношении парциального окисления ДММ кислородом воздуха, а также разработка процесса получения из ДММ обогащенной по водороду газовой смеси с использованием этой каталитической системы.

Технический результат -. почти полная конверсия диметоксиметана ДММ в газовую смесь, содержащую около 60 об. % синтез газа (Н2+СО).

Задача решается разработкой катализатора получения обогащенной по водороду газовой смеси путем парциального окисления ДММ, представляющего собой катализатор, содержащий металлы (Pt, Rh, Ru и Pd), нанесенные на оксидный носитель ZrO2-CeO2.

В состав катализатора парциального окисления ДММ входит платина до 5 мас. %, остальное - ZrO2-CeO2.

В состав катализатора парциального окисления ДММ входит рутений до 5 мас. %, остальное - ZrO2-CeO2.

В состав катализатора парциального окисления ДММ входит родий до 3 мас. %, остальное - ZrO2-CeO2.

В состав катализатора парциального окисления ДММ входит палладий до 3 мас. %, остальное - ZrO2-CeO2.

Задача также решается разработкой способа получения обогащенной по водороду газовой смеси взаимодействием ДММ и воздуха в присутствии катализатора, представляющего собой нанесенный металл (Pt, Rh и Ru) на оксидные носители: CeO2-ZrO2. Реакцию осуществляют при 100-600°С, 1-20 атм и мольном соотношении воздух / диметоксиметан = 1-3.

Реакция парциального окисления ДММ кислородом воздуха в водородсодержащий газ или синтез газ осуществляется впервые.

Катализаторы Pt/ZrO2-CeO2 готовили пропиткой носителей ZrO2-CeO2 водным раствором H2PtCl6 по влагоемкости. Образцы после пропитки сушили на воздухе и затем прокаливали при 500°С.

Катализаторы Ru/ZrO2-CeO2 готовили пропиткой носителей ZrO2-CeO2 водным раствором RuCl3⋅3H2O по влагоемкости. Образец после пропитки сушили на воздухе и затем прокаливали при 500°С.

Катализатор Rh/ZrO2-CeO2 готовили пропиткой носителя ZrO2-CeO2 водным раствором RhCl3⋅3H2O по влагоемкости. Образец после пропитки сушили на воздухе и затем прокаливали при 500°С.

Сущность изобретения иллюстрируются следующими примерами.

Пример 1.

Парциальное окисление ДММ осуществляют в установке проточного типа в кварцевом реакторе с внутренним диаметром 6 мм на навеске катализатора 0,3 мл при соотношении воздух : ДММ = 2,5:1 или N2 : O2 : ДММ = 4:1:2, времени контакта 10000 ч-1, температуре 300°С и давлении 1 атм. Состав катализатора составляет, мас. %: платина - 1, остальное - ZrO2-CeO2.

Результаты приведены в таблице 1.

Пример 2.

Аналогично примеру 1, но реакцию проводят при температуре 400°С, результаты приведены в таблице 1.

Пример 3.

Аналогично примеру 1, но реакцию проводят при температуре 500°С, результаты приведены в таблице 1.

Пример 4.

Аналогично примеру 1, но состав катализатора составляет, мас. %: рутений - 1, остальное - носитель ZrO2-CeO2. Полученные результаты приведены в таблице 2.

Пример 5.

Аналогично примеру 4, но реакцию проводят при температуре 400°С, результаты приведены в таблице 2.

Пример 6.

Аналогично примеру 4, но реакцию проводят при температуре 500°С, результаты приведены в таблице 2.

Пример 7.

Аналогично примеру 1, но состав катализатора составляет, мас. %: родий - 1, остальное - носитель ZrO2-CeO2.. Полученные результаты приведены в таблице 3.

Пример 8.

Аналогично примеру 7, но реакцию проводят при температуре 400°С, результаты приведены в таблице 3.

Пример 9.

Аналогично примеру 7, но реакцию проводят при температуре 500°С, результаты приведены в таблице 3.

Таким образом, предлагаемые катализаторы являются весьма эффективными в реакции парциального окисления ДММ и при 400-500°С обеспечивают почти полную конверсию ДММ в газовую смесь, содержащую около 60 об. % синтез газа (H2+СО). Следовательно, для обеспечения работы энергоустановки на базе твердооксидных топливных элементов мощностью 1 кВт необходимо около 70 г Pt/ZrO2-CeO2 или Ru/ZrO2-СеО2 катализатора.

Похожие патенты RU2707880C1

название год авторы номер документа
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ОБОГАЩЕННОЙ ПО ВОДОРОДУ ГАЗОВОЙ СМЕСИ ИЗ ДИМЕТОКСИМЕТАНА 2013
  • Бадмаев Сухэ Дэмбрылович
  • Печенкин Алексей Александрович
  • Беляев Владимир Дмитриевич
  • Собянин Владимир Александрович
RU2533608C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ОБОГАЩЕННОЙ ПО ВОДОРОДУ ГАЗОВОЙ СМЕСИ ИЗ ДИМЕТИЛОВОГО ЭФИРА И ВОЗДУХА 2017
  • Бадмаев Сухэ Дэмбрылович
  • Беляев Владимир Дмитриевич
  • Печенкин Алексей Александрович
  • Собянин Владимир Александрович
RU2677875C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА 2010
  • Бадмаев Сухэ Дэмбрылович
  • Волкова Галина Георгиевна
  • Беляев Владимир Дмитриевич
  • Плясова Людмила Михайловна
  • Кардаш Татьяна Юрьевна
  • Собянин Владимир Александрович
RU2431526C1
СПОСОБ ОЧИСТКИ ВОДОРОДСОДЕРЖАЩЕЙ ГАЗОВОЙ СМЕСИ ОТ ОКСИДА УГЛЕРОДА 2002
  • Беляев В.Д.
  • Гальвита В.В.
  • Снытников П.В.
  • Семин Г.Л.
  • Собянин В.А.
RU2211081C1
КАТАЛИЗАТОР ОЧИСТКИ ВОДОРОДСОДЕРЖАЩЕЙ ГАЗОВОЙ СМЕСИ ОТ СО И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2007
  • Цырульников Павел Григорьевич
  • Шляпин Дмитрий Андреевич
  • Ведягин Алексей Анатольевич
  • Шишкина Татьяна Александровна
  • Беляев Владимир Дмитриевич
  • Семин Георгий Леонидович
  • Снытников Павел Валерьевич
  • Собянин Владимир Александрович
RU2336947C1
СПОСОБ ОЧИСТКИ ВОДОРОДСОДЕРЖАЩИХ ГАЗОВЫХ СМЕСЕЙ ОТ ОКСИДА УГЛЕРОДА (ВАРИАНТЫ) 2006
  • Снытников Павел Валерьевич
  • Семин Георгий Леонидович
  • Сидякин Михаил Владимирович
  • Собянин Владимир Александрович
  • Кириллов Валерий Александрович
  • Бризицкий Олег Федорович
  • Иванов Игорь Викторович
  • Терентьев Валерий Яковлевич
RU2359741C2
Способ получения водорода 2022
  • Бадмаев Сухэ Дэмбрылович
  • Кузнецова Александра Денисовна
  • Беляев Владимир Дмитриевич
  • Собянин Владимир Александрович
RU2803569C1
Катализатор конверсии природного или попутного газа в синтез-газ в процессе автотермического риформинга и способ его получения 2016
  • Михайлов Сергей Александрович
  • Джунгурова Гиляна Евгеньевна
  • Мамонов Николай Александрович
  • Григорьев Дмитрий Александрович
  • Михайлов Михаил Николаевич
RU2638534C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА 2003
  • Павлова С.Н.
  • Тихов С.Ф.
  • Садыков В.А.
  • Снегуренко О.И.
  • Дятлова Ю.Н.
  • Золотарский И.А.
  • Кузьмин В.А.
  • Боброва Л.Н.
  • Востриков З.Ю.
RU2248240C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА И СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА С ЕГО ИСПОЛЬЗОВАНИЕМ 2004
  • Минами Такеси
  • Имагава Кенити
  • Нагумо Ацуро
  • Мацумура Тецуро
RU2333797C2

Реферат патента 2019 года Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана и воздуха

Изобретение относится к каталитическому способу осуществления реакции парциального окисления диметоксиметана (ДММ) с целью получения обогащенной по водороду газовой смеси, которая может использоваться для питания топливных элементов различного назначения, в том числе и для топливных элементов, установленных на передвижных средствах. Описано применение металлов VIII группы, нанесенных на оксидный носитель ZrO2-СеО2, в качестве катализатора для получения обогащенной по водороду газовой смеси парциальным окислением диметоксиметана кислородом воздуха, причем в состав катализатора входит платина до 5 мас.%, или рутений до 5 мас.%, или родий до 3 мас.%, остальное - ZrO2-СеО2. Технический результат - почти полная конверсия диметоксиметана ДММ в газовую смесь, содержащую около 60 об.% синтез газа (Н2+СО). 9 пр., 3 табл.

Формула изобретения RU 2 707 880 C1

Применение металлов VIII группы, нанесенных на оксидный носитель ZrO2-СеО2, в качестве катализатора для получения обогащенной по водороду газовой смеси парциальным окислением диметоксиметана кислородом воздуха, причем в состав катализатора входит платина до 5 мас.%, или рутений до 5 мас.%, или родий до 3 мас.%, остальное - ZrO2-СеО2.

Документы, цитированные в отчете о поиске Патент 2019 года RU2707880C1

Аппарат для уничтожения личинок кровососущих мошек в водоемах 1960
  • Новиков С.И.
  • Одинцов В.С.
SU138423A1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА 2017
  • Симонов Павел Анатольевич
  • Шойнхорова Туяна Баировна
  • Снытников Павел Валерьевич
  • Потемкин Дмитрий Игоревич
  • Беляев Владимир Дмитриевич
  • Собянин Владимир Александрович
RU2653360C1
СПОСОБ ПОЛУЧЕНИЯ ЛИТОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2017
  • Шефер Арсений Андреевич
  • Сергеев Сергей Александрович
  • Финкельштейн Аркадий Борисович
  • Чикова Ольга Анатольевна
RU2712675C2
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНЫХ КАТАЛИЗАТОРОВ НА ПОДЛОЖКЕ 2003
  • Эйгарден Арне Халльвард
  • Перес-Рамирес Хавьер
  • Уоллер Дэвид
  • Шеффель Клаус
  • Брэкенбери Дэвид М.
RU2329100C2
КАТАЛИЗАТОРЫ, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ ПРИМЕНЕНИЯ В СПОСОБАХ ПАРОВОГО РИФОРМИНГА 2012
  • Фивьер Марк Роберт
RU2580548C2
US 9808793 B1, 07.11.2017.

RU 2 707 880 C1

Авторы

Бадмаев Сухэ Дэмбрылович

Ахметов Никита Олегович

Шойнхорова Туяна Баировна

Симонов Павел Анатольевич

Беляев Владимир Дмитриевич

Собянин Владимир Александрович

Даты

2019-12-02Публикация

2018-12-03Подача