Способ определения деформаций гидроцилиндра под нагрузкой с шарнирными опорами штока и цилиндра Российский патент 2019 года по МПК E21D15/44 

Описание патента на изобретение RU2708915C1

Предлагаемое изобретение может быть использовано, преимущественно, для оценки деформаций гидростоек шахтной крепи с целью определения эффективности их конструкции и/или наличия необходимых зазоров для работы уплотнений поршня и цилиндра в условиях нагрузок, приближенных к условиям применения. При приложении нагрузки на гидроцилиндр под действием рабочей жидкости появляются радиальные деформации цилиндра, а также при работе гидроцилиндра за счет зазоров между поршнем и цилиндром продольная ось цилиндра может наклоняться от первоначального положения, в результате чего происходит перекос продольных осей цилиндра и штока с поршнем между собой, что также ведет к увеличению уплотняемого зазора и ухудшает условия работы уплотнительных элементов сопряжения поршня и цилиндра. Поэтому, с целью подбора уплотнения, соответствующего реальным уплотняемым зазорам, для гидроцилиндра с шарнирными опорами штока и цилиндра требуется определение его деформаций под нагрузкой.

Известно цифровое устройство косвенного измерения больших и малых наружных диаметров (пат. РФ на полезную модель №77416, МПК G01 5/08, опубл. 20.10.2008), согласно которому способ определения диаметров заключается в том, что устанавливают измерительную базу в контакте с внешней поверхностью цилиндра и измерительный элемент в измерительный контакт с внешней поверхностью цилиндра и на основе его данных определяют наружный диаметр. При этом используют измерительный элемент в виде индикатора прямолинейных перемещений, который устанавливают относительно измерительной базы с образованием измерительной точки, расположенной на внешней поверхности цилиндра в плоскости измерения, перпендикулярной продольной оси цилиндра, и с возможностью перемещения измерительной точки относительно поверхности цилиндра.

Недостатком данного способа является невозможность определения величины угла и направления наклона продольной оси цилиндра относительно измерительной базы в составе гидроцилиндра при изменении нагрузки, а значит невозможность определения угла перекоса цилиндра и поршня со штоком между собой из-за того, что измерительная база находится в контакте с поверхностью цилиндра и смещается вместе с ней при деформациях гидроцилиндра.

Наиболее близким к заявляемому изобретению является способ определения деформаций гидроцилиндра под нагрузкой с шарнирными опорами штока и цилиндра, примененный в импульсном стенде для исследования характеристик шахтных гидростоек (а.с. СССР №303442, МПК E21D 15/44, опубл. 03.05.1971, Бюл. №16), при котором устанавливают поршень со штоком в положение, когда в поршневой полости имеется рабочая жидкость, позиционируют цилиндр в исходном положении относительно рамы, устанавливают измерительные элементы в контакт с внешней поверхностью цилиндра, затем фиксируют показания измерительных элементов, затем создают или изменяют направленную по прямой линии, соединяющей центры шарнирных опор штока и цилиндра, нагрузку на гидроцилиндр, после чего снова фиксируют показания измерительных элементов и по разнице их показаний до и после изменения нагрузки определяют радиальные деформации цилиндра на основе данных перемещений его внешней поверхности. В качестве измерительных элементов используют тензорезисторы, которые устанавливают в контакт с поверхностью цилиндра путем наклеивания.

Недостатком данного способа является высокая трудоемкость установки измерительных элементов в контакт с поверхностью цилиндра из-за необходимости наклеивания тензорезисторов, необходимость использования дополнительных измерительных приборов для тарировки тензорезисторов, а также низкие функциональные возможности из-за невозможности определения угла наклона продольной оси цилиндра от первоначального значения после изменения нагрузки, с помощью которого можно определить перекос продольных осей цилиндра и штока с поршнем между собой.

Задачей предлагаемого изобретения является уменьшение трудоемкости установки измерительных элементов в контакт с поверхностью цилиндра, путем исключения их неразъемного соединения между собой, а также обеспечение определения радиальных деформаций и угла наклона продольной оси цилиндра от первоначального значения после изменения нагрузки без использования дополнительных средств измерения.

Для достижения указанного технического результата в способе, при котором устанавливают поршень со штоком в положение, когда в поршневой полости имеется рабочая жидкость, позиционируют цилиндр в исходном положении относительно рамы и устанавливают измерительные элементы в измерительный контакт с внешней поверхностью цилиндра, затем, фиксируют показания измерительных элементов, затем, создают или изменяют направленную по прямой линии, соединяющей центры шарнирных опор штока и цилиндра, нагрузку на гидроцилиндр, после чего снова фиксируют показания измерительных элементов и по разнице их показаний до и после изменения нагрузки определяют радиальные деформации и угол наклона цилиндра на основе данных перемещений его внешней поверхности, применены следующие новые признаки.

Рама, относительно которой позиционируют цилиндр является измерительной базой. Используют измерительные элементы в виде четырех индикаторов прямолинейных перемещений, которые устанавливают неподвижно относительно измерительной базы попарно, по разные стороны от продольной оси цилиндра, в две взаимно перпендикулярные линии измерения в плоскости измерения, перпендикулярной продольной оси цилиндра до создания или изменения нагрузки на гидроцилиндр, и с возможностью перемещения мест измерительного контакта с внешней поверхностью цилиндра, перед созданием или изменением нагрузки на гидроцилиндр индикаторы устанавливают так, что линия прямолинейных перемещений индикаторов перпендикулярна измеряемой поверхности, измерения производят между параллельными линиями, проведенными касательно к измеряемым поверхностям цилиндра до и после изменения нагрузки, и по разнице их показаний до и после изменения нагрузки, с учетом расстояния от центра шарнирной опоры цилиндра до плоскости измерения, производят определение величины и направления наклона продольной оси цилиндра от первоначально установленных значений, с учетом которых определяют радиальные деформации цилиндра в поперечном его сечении.

В частном случае, возможность перемещения мест измерительного контакта с внешней поверхностью цилиндра обеспечена применением в качестве индикаторов прямолинейных перемещений индикаторов часового типа, измерительные штоки которых образуют непосредственный измерительный контакт с внешней поверхностью цилиндра и упруго прижаты к внешней поверхности цилиндра

Предлагаемое изобретение поясняется чертежами, где на фиг. 1 изображена измерительная схема, вид сбоку; на фиг. 2 - разрез по А-А на фиг. 1; на фиг. 3 - вид сбоку в увеличенном виде.

Способ определения деформаций гидроцилиндра под нагрузкой с шарнирными опорами штока и цилиндра заключается в следующем.

Шарнирными опорами штока 2 и цилиндра 3 могут являться сферические шарниры и/или продольные однонаправленные шарниры.

Устанавливают поршень 1 со штоком 2 гидроцилиндра путем его раздвижки в положении, при котором в поршневой полости имеется рабочая жидкость.

Позиционируют цилиндр 3 гидроцилиндра в исходном положении относительно рамы, являющейся измерительной базой 4. Устанавливают измерительные элементы в измерительный контакт с внешней поверхностью цилиндра 3. При этом используют измерительные элементы в виде четырех индикаторов 5 прямолинейных перемещений, которые устанавливают неподвижно относительно измерительной базы 4 попарно, по разные стороны от продольной оси цилиндра 3, в две взаимно перпендикулярные линии измерения в плоскости измерения, перпендикулярной продольной оси цилиндра до создания или изменения нагрузки на гидроцилиндр. Места измерительного контакта с внешней поверхностью цилиндра 3 имеют возможность перемещения, в том числе как в процессе создания или изменения нагрузки на гидроцилиндр, так и при их передвижении продольно внешней поверхности цилиндра 3 при позиционировании, что может быть обеспечено, например, применением в качестве индикаторов 5 прямолинейных перемещений индикаторов часового типа, измерительные штоки 6 которых образуют непосредственный измерительный контакт с внешней поверхностью цилиндра 3 и упруго прижаты к внешней поверхности цилиндра 3. Измерительные элементы, а именно индикаторы 5 прямолинейных перемещений, устанавливают в измерительный контакт с внешней поверхностью цилиндра 3 в том месте вдоль его продольной оси, где требуется производить измерение, причем индикаторы 5 прямолинейных перемещений могут быть установлены как в зоне поршневой, так и в зоне штоковой полости раздвинутого гидроцилиндра.

Затем, фиксируют показания измерительных элементов, а именно четырех индикаторов 5 прямолинейных перемещений. Измерения производят между параллельными линиями, проведенными касательно к измеряемой внешней поверхности цилиндра 3 до и после изменения нагрузки, для этого, например, измерительные штоки 6 индикаторов 5 прямолинейных перемещений часового типа могут быть выполнены с рабочей поверхностью в виде ножа, прямолинейное острие которого перпендикулярно направлению измерения и лежит в плоскости измерения.

После чего создают или изменяют направленную по прямой линии, соединяющей центры шарнирных опор штока 2 и цилиндра 3, нагрузку на гидроцилиндр. Нагрузка на гидроцилиндр может быть создана, например, с помощью приложения внешней силы Р (фиг. 1) нагрузочным механизмом 6 на шарнирную опору штока 2 при закрытой поршневой полости, либо путем ограничения раздвижки гидроцилиндра и подачи рабочей жидкости в его поршневую полость. В результате изменения нагрузки на гидроцилиндр происходит изменение давления в рабочих поршневой или штоковой полостях, что оказывает влияние на деформированное состояние цилиндра 3, а также, вследствие наличия зазоров между поршнем 1 и цилиндром 3, приводит к изменению угла наклона продольной оси цилиндра 3 от первоначального значения, а значит к появлению перекоса продольных осей штока 2 с поршнем 1 и цилиндра 3 между собой, что ухудшает условия работы уплотнительных элементов 7 сопряжения поршня 1 и цилиндра 3, так как за счет перекоса дополнительно изменяются форма и величина зазора между ними.

По разнице показаний индикаторов 5 прямолинейных перемещений до и после изменения нагрузки, с учетом расстояния от центра шарнирной опоры цилиндра до плоскости измерения, производят определение величины и направления наклона продольной оси цилиндра 3 от первоначально установленных значений, которые можно определить геометрически из следующих зависимостей:

δ13=2L[sinαx+(1-cosαx)tgαx],

δ24=2L[sinαy+(1-cosαy)tgαy],

где δ1, δ2, δ3, δ4 - разница показаний четырех индикаторов 5 прямолинейных перемещений до и после изменения нагрузки, имеющая положительное значение при увеличении показаний (сокращении индикаторов 5) и отрицательное при уменьшении показаний (раздвижки индикаторов 5), при этом пары δ3 и δ1, δ4 и δ2 - показания по перпендикулярным друг другу прямым линиям с противоположных относительно продольной оси цилиндра 3 сторон (фиг. 2);

L - расстояние от центра шарнирной опоры цилиндра 3 до плоскости измерения;

αх и αу - углы наклона продольной оси цилиндра 3 от первоначально установленных значений в двух взаимно перпендикулярных плоскостях, после изменения нагрузки (фиг. 3).

Затем, с учетом значений углов αх и αу и значений, например, δ3 и δ4 определяют радиальные деформации цилиндра 3 в поперечном его сечении, которые можно определить геометрически из следующих зависимостей:

δ3=Lsinαx+(R+dRx)(cosαx+sinαxtgαx)+L(1-cosαx)tgαx-R,

δ4=Lsinαy+(R+dRy)(cosαy+sinαytgαy)+L(1-cosαy)tgαy-R,

где R - исходный радиус цилиндра до изменения нагрузки;

dRx и dRy - радиальные деформации цилиндра 3 в виде изменения радиуса внешней поверхности цилиндра 3 после изменения нагрузки, в двух взаимно перпендикулярных плоскостях, соответственно, направленные по осям х и у;

δ1, δ2, δ3, δ4 - разница показаний четырех индикаторов 5 прямолинейных перемещений до и после изменения нагрузки, имеющая положительное значение при увеличении показаний (сокращении индикаторов 5) и отрицательное при уменьшении показаний (раздвижки индикаторов 5), при этом пары δ3 и δ1, δ4 и δ2 - показания по перпендикулярным друг другу прямым линиям с противоположных относительно продольной оси цилиндра 3 сторон (фиг. 2);

L - расстояние от центра шарнирной опоры цилиндра 3 до плоскости измерения;

αх и αу - углы наклона продольной оси цилиндра 3 от первоначально установленных значений в двух взаимно перпендикулярных плоскостях, после изменения нагрузки (фиг. 3).

Направление и величину смещения в пространстве продольной оси гидроцилиндра в месте измерения, а также перекос продольных осей цилиндра 3 и штока 2 с поршнем 1 между собой далее, при необходимости, может быть геометрически определен с учетом значений углов αх и αу, расстояния от центра шарнирной опоры цилиндра 3 до плоскости измерения L и текущей величины расстояния поршня 1 до дна цилиндра 3 (текущей раздвижки гидроцилиндра).

Погрешность определения деформаций гидроцилиндра под нагрузкой с шарнирными опорами штока и цилиндра определяется погрешностью индикаторов 5 прямолинейных перемещений и их базирования относительно рамы, являющейся измерительной базой 4, точностью измерения расстояния L от центра шарнирной опоры цилиндра 3 до плоскости измерения, а также погрешность обусловлена локальными неровностями внешней поверхности цилиндра 3, по которой происходит перемещение места измерительного контакта индикаторов 5 прямолинейных перемещений под действие нагрузки.

Таким образом, происходит уменьшение трудоемкости установки измерительных элементов в виде четырех индикаторов 5 прямолинейных перемещений в контакт с внешней поверхностью цилиндра 3, путем исключения их неразъемного соединения между собой, а также одновременное обеспечение определения радиальных деформаций и угла наклона продольной оси цилиндра 3 от первоначального значения после изменения нагрузки без использования дополнительных средств измерения, в частности, необходимых тарировки тензорезисторов.

Похожие патенты RU2708915C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ ГЕОМЕТРИЧЕСКОЙ ФОРМЫ НОМИНАЛЬНО КРУГЛОЙ ЦИЛИНДРИЧЕСКОЙ ДЕТАЛИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1999
  • Биндер Я.И.
  • Гебель И.Д.
  • Нефедов А.И.
  • Свиткин М.М.
RU2158895C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ГЛУБОКИХ ОТВЕРСТИЙ 1999
  • Терехов В.М.
RU2179301C2
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ШПОНОЧНОГО ПАЗА ВАЛА 2002
  • Архаров А.П.
RU2205364C1
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ШПОНОЧНОГО ПАЗА ВАЛА 1999
  • Архаров А.П.
  • Чирков А.В.
RU2157508C1
СТЕНД ДЛЯ ИСПЫТАНИЯ УПРУГОГО ЭЛЕМЕНТА 2000
  • Артемкин А.А.
  • Грибов В.В.
RU2194964C2
Стенд для испытания гидроцилиндров 1989
  • Кулинич Владимир Васильевич
  • Золотарь Аркадий Исаакович
  • Гольдбухт Александр Ефимович
  • Ракома Анатолий Васильевич
  • Голубин Владимир Прокопьевич
SU1687930A1
ПОРШЕНЬ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 1996
  • Захаров Л.А.
  • Панфилов Ю.Т.
  • Химич В.Л.
  • Каликин В.П.
  • Самылин П.Л.
  • Чирканов В.Ф.
  • Камбаров З.М.
RU2121591C1
Стенд для диагностики рулевых приводов транспортных средств 1989
  • Кравченко Павел Александрович
  • Абдель Елах Хамид Ясин
SU1651133A1
ГИДРАВЛИЧЕСКИЙ МНОГОЭТАЖНЫЙ ПРЕСС С ГИДРОЦИЛИНДРАМИ ПОДЪЕМА И НАГРЕВАТЕЛЬНЫМИ ПЛИТАМИ 2010
  • Кузнецов Владислав Борисович
  • Широков Александр Владимирович
  • Перевозников Василий Николаевич
RU2440244C2
Устройство для взвешивания биологического урожая сельскохозяйственных культур 1988
  • Салдаев Александр Макарович
  • Манихин Николай Иванович
  • Сапунков Анатолий Петрович
SU1521359A1

Иллюстрации к изобретению RU 2 708 915 C1

Реферат патента 2019 года Способ определения деформаций гидроцилиндра под нагрузкой с шарнирными опорами штока и цилиндра

Изобретение относится к горной промышленности и может быть использовано, преимущественно, для оценки деформаций гидростоек шахтной крепи с целью определения эффективности их конструкции и/или наличия необходимых зазоров для работы уплотнений поршня и цилиндра в условиях нагрузок, приближенных к условиям применения. Согласно способу устанавливают поршень со штоком в положение, когда в поршневой полости имеется рабочая жидкость. Позиционируют цилиндр в исходном положении относительно являющейся измерительной базой рамы. Затем устанавливают в измерительный контакт с поверхностью цилиндра измерительные элементы, в виде четырех индикаторов прямолинейных перемещений, которые устанавливают неподвижно относительно измерительной базы попарно, по разные стороны от продольной оси цилиндра, в две взаимно перпендикулярные линии измерения в плоскости измерения, перпендикулярной продольной оси цилиндра до создания или изменения нагрузки на гидроцилиндр, и с возможностью перемещения мест измерительного контакта с поверхностью цилиндра. Перед созданием или изменением нагрузки на гидроцилиндр индикаторы устанавливают так, что линия прямолинейных перемещений индикаторов перпендикулярна измеряемой поверхности. Фиксируют показания измерительных элементов, затем создают или изменяют направленную по прямой линии, соединяющей центры шарнирных опор штока и цилиндра, нагрузку на гидроцилиндр. После чего снова фиксируют показания. Измерения производят между параллельными линиями, проведенными касательно к измеряемым поверхностям цилиндра до и после изменения нагрузки. По разнице показаний измерительных элементов до и после изменения нагрузки на основе данных перемещений его внешней поверхности, с учетом расстояния от центра шарнирной опоры цилиндра до плоскости измерения, производят определение величины и направления наклона продольной оси цилиндра от первоначально установленных значений, с учетом которых определяют радиальные деформации цилиндра в поперечном его сечении. Технический результат заключается в уменьшении трудоемкости установки измерительных элементов в контакте с поверхностью цилиндра, путем исключения их неразъемного соединения между собой, а также обеспечении определения радиальных деформаций и угла наклона продольной оси цилиндра от первоначального значения после изменения нагрузки без использования дополнительных средств измерения. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 708 915 C1

1. Способ определения деформаций гидроцилиндра под нагрузкой с шарнирными опорами штока и цилиндра, при котором устанавливают поршень со штоком в положение, когда в поршневой полости имеется рабочая жидкость, позиционируют цилиндр в исходном положении относительно рамы и устанавливают измерительные элементы в измерительный контакт с поверхностью цилиндра, затем, фиксируют показания измерительных элементов, затем, создают или изменяют направленную по прямой линии, соединяющей центры шарнирных опор штока и цилиндра, нагрузку на гидроцилиндр, после чего снова фиксируют показания измерительных элементов и по разнице их показаний до и после изменения нагрузки определяют радиальные деформации цилиндра на основе данных перемещений его внешней поверхности, отличающийся тем, что рама, относительно которой позиционируют цилиндр, является измерительной базой, используют измерительные элементы в виде четырех индикаторов прямолинейных перемещений, которые устанавливают неподвижно относительно измерительной базы попарно, по разные стороны от продольной оси цилиндра, в две взаимно перпендикулярные линии измерения в плоскости измерения, перпендикулярной продольной оси цилиндра до создания или изменения нагрузки на гидроцилиндр, и с возможностью перемещения мест измерительного контакта с поверхностью цилиндра, перед созданием или изменением нагрузки на гидроцилиндр индикаторы устанавливают так, что линия прямолинейных перемещений индикаторов перпендикулярна измеряемой поверхности, измерения производят между параллельными линиями, проведенными касательно к измеряемым поверхностям цилиндра до и после изменения нагрузки, и по разнице их показаний до и после изменения нагрузки, с учетом расстояния от центра шарнирной опоры цилиндра до плоскости измерения, производят определение величины и направления наклона продольной оси цилиндра от первоначально установленных значений, с учетом которых определяют радиальные деформации цилиндра в поперечном его сечении.

2. Способ определения деформаций гидроцилиндра под нагрузкой с шарнирными опорами штока и цилиндра по п. 1, отличающийся тем, что возможность перемещения мест измерительного контакта с поверхностью цилиндра обеспечена применением в качестве индикаторов прямолинейных перемещений индикаторов часового типа, измерительные штоки которых образуют непосредственный измерительный контакт с поверхностью цилиндра и упруго прижаты к поверхности цилиндра.

Документы, цитированные в отчете о поиске Патент 2019 года RU2708915C1

ИМПУЛЬСНЫЙ СТЕНД для ИССЛЕДОВАНИЯ ХАРАКТЕРИСТИК ШАХТНЫХ ГИДРОСТОЕК 0
  • Ю. Д. Красников, В. В. Туркин, А. А. Кораблев, В. Н. Хорин, А. М. Плотников Р. И. Росин
  • Институт Горного Дела А. Н. Скочинского
SU303442A1
Стенд для испытания гидроцилиндров 1989
  • Кулинич Владимир Васильевич
  • Золотарь Аркадий Исаакович
  • Гольдбухт Александр Ефимович
  • Ракома Анатолий Васильевич
  • Голубин Владимир Прокопьевич
SU1687930A1
ГИДРОЦИЛИНДР С ИЗМЕРИТЕЛЬНОЙ СИСТЕМОЙ ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ПОРШНЯ И СПОСОБ ВЫЯВЛЕНИЯ УТЕЧКИ ЧЕРЕЗ УПЛОТНЕНИЕ В ГИДРОЦИЛИНДРЕ 2014
  • Арнольд Бернхард
RU2681556C2
Устройство для измерения плоских деформаций 1984
  • Лодус Евгений Васильевич
SU1234720A1
Устройство для измерения нагрузок 1984
  • Гужова Светлана Вениаминовна
  • Курленя Михаил Владимирович
  • Кулаков Геннадий Иванович
SU1240894A1
EP 1079118 A2, 28.02.2001.

RU 2 708 915 C1

Авторы

Буялич Геннадий Даниилович

Бяков Максим Анатольевич

Буялич Константин Геннадьевич

Хуснутдинов Михаил Константинович

Ананьев Кирилл Алексеевич

Увакин Станислав Викторович

Умрихина Веста Юрьевна

Анучин Александр Владимирович

Даты

2019-12-12Публикация

2019-07-03Подача