Изобретение относится к порошковой металлургии, в частности к производству металлических порошков. В промышленности для получения металлических порошков применяют физические и физико-химические методы.
Известен способ получения дисперсного металлического порошка кобальта [патент РФ №2030972, B22F 9/22, опубл. 20.03.1995 г.], заключающийся в том, что сначала готовят раствор щелочи, затем в него порциями вводят раствор соли кобальта при комнатной температуре при перемешивании. Полученный гидроксид металла подвергают фильтрации и промыванию, в процессе которых осуществляют его измельчение. Затем полученный продукт после сушки на воздухе восстанавливают до металла, с помощью пропускаемого через него водорода, при нагревании до температуры выше порога восстановления гидроксида металла.
К недостаткам способа можно отнести расход большого количества воды. Кроме того, рекомендуемые температурно-временные параметры восстановления гидроксида металла при температуре выше порога восстановления не позволяют получать ультрадисперсный порошок, так как незначительное повышение температуры выше порога температуры восстановления приводит к одновременному интенсивному протеканию процесса спекания образовавшихся энергонасыщенных ультрадисперсных частиц металла.
Известен способ получения порошка металла подгруппы хрома, преимущественно молибдена и вольфрама (см. Гостищев В.В. Получение порошков молибдена и вольфрама восстановлением их соединений магнием в расплаве хлорида натрия / Гостищев В.В., Бойко В.Ф. // Химическая технология. - 2006. - №8. - С. 15-17), включающий загрузку в реактор хлорида натрия, нагрев реактора до температуры 827°С с образованием хлоридного расплава, растворение в нем вольфрамата или молибдата натрия, предварительно полученных сплавлением с содой оксидов WO3 или MoO3. Затем в качестве восстановителя в реактор добавляют порошок магния с избытком 40% по отношению к его стехиометрическому значению и осуществляют взаимодействие оксидного соединения вольфрама или молибдена с магнием в расплаве хлорида натрия с восстановлением вольфрамата натрия или молибдата натрия до металла. Расплав выдерживают 15-20 минут до полного осаждения образовавшегося порошка. Затем расплав сливают, осажденный порошок отмывают водой от остатка солей до нейтрального состояния и сушат. В результате получают порошки вольфрама или молибдена с удельной поверхностью соответственно 0,06 и 0,11 м2/г.
Данный способ характеризуется недостаточной технологичностью по причине получения порошков с пониженной величиной удельной поверхности. Кроме того, недостатком способа является повышенный расход магния вследствие проведения реакции восстановления при избытке магния по отношению к стехиометрии. Избыточный магний безвозвратно теряется вместе со сливаемым расплавом и при отмывке порошка от остатка солей.
Наиболее близким к заявленному техническому решению является способ получения металлического порошка, описанный в патенте РФ 2332280 С2, B22F 9/14, 30.06.2006, в котором порошок получают путем зажигания разряда между двумя электродами, один из которых катод, который выполняют из распыляемого материала в виде стержня, диаметром 10≤d≤40 мм. В качестве другого электрода-анода используют электролит (техническая вода). Процесс получения порошка ведут при следующих параметрах: напряжение между электродами 500≤U≤650 В, ток разряда 1,5≤I≤3 А, расстояние между катодом и электролитом 2≤l≤10 мм. Весь процесс ведут при атмосферном давлении.
Недостатком прототипа является невозможность получения порошков-сплавов с равномерным распределением легирующих элементов, наноразмерных порошков, а также высокие энергетические затраты.
Заявляемое изобретение направлено на решение задачи получения порошков из сплава Т30К4 с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.
Поставленная задача достигается тем что вольфрамотитанокобальтовые порошки из отходов сплава Т30К4 п путем электроэрозионного диспергирования сплава Т30К4 в спирте при напряжении на электродах 110…120 В, ёмкости разрядных конденсаторов 48 мкФ и частоте следования импульсов 130...140 Гц.
На фигуре 1 - результаты микроскопии и микроанализа порошков; на фигуре 2 - рентгеноспектральный микроанализ образца, на фигуре 3 - гранулометрический состав образцов, на фигуре 4 - дифрактограмма фазового состава электроэрозионного порошка.
Пример 1.
На экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов в спирте сплав Т30К4. При этом использовали следующие электрические параметры установки:
− частота следования импульсов 80...90 Гц;
− напряжение на электродах от 70…80 В;
− ёмкость конденсаторов 35 мкФ.
Данные режимы получения порошка не рекомендуются, т.к. процесс диспергирования идет не стабильно.
Пример 2.
На экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов в спирте диспергировали сплав Т30К4. При этом использовали следующие электрические параметры установки:
− частота следования импульсов 130...140 Гц;
− напряжение на электродах от 110…120 В;
− ёмкость конденсаторов 48 мкФ.
Полученный вольфрамотитанокобальтовый порошок исследовали различными методами. Изучение фазового состава электроэрозионного вольфрамотитанокобальтового порошка проводили помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп Nova NanoSEM 450. В результате изучения концентраций элементного и минералогического состава образца, были получены результаты, представленные на фигуре 2.
Основным материалом в образцах является вольфрам – 50,14%, титан – 19,31%, кислород – 18,77%, углерод – 6,17%, кобальт – 3,96%.
Затем полученный вольфрамотитанокобальтовый порошок проанализировали с помощью лазерного анализатора размеров частиц «Analysette 22 NanoTec» для определения распределения полученных частиц порошка по размерам (фигура 3).
Установлено, что средний размер частиц составляет 23,09 мкм, арифметическое значение – 23,088 мкм. Коэффициент элонгации (удлинения) частиц размером составляет 2,16, что говорит о сферической форме частиц порошка.
Установлено, что диспергирование в спирте снижает потери углерода и способствует образованию фаз α-WC и ТiС (фигура 4).
Для изучения формы и морфологии, полученных вольфрамотитанокобальтовых порошков, были выполнены снимки на растровом электронном микроскопе «Nova NanoSEM 450». На основании фигуры 1, порошок, полученный методом ЭЭД из сплава Т30К4, в основном состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов) и осколочной формы.
Пример 3.
На экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов в спирте диспергировали сплав Т30К4. При этом использовали следующие электрические параметры установки:
− частота следования импульсов 180...190 Гц;
− напряжение на электродах от 150…160 В;
− ёмкость конденсаторов 68 мкФ.
Источники информации
1. Борд, Н.Ю. Новая технология переработки отходов твердых и тяжелых сплавов // Инструмент. - 1996. №6 - С. 47-49.
2. Заликман, А.Н. Получение твердых сплавов из регенерированных смесей WC-Co, полученных из кусковых отходов цинковым методом // Цветные металлы. - 1993. №1 - С. 10.
3. Немилов, Е.Ф. Электроэрозионная обработка материалов. Л.: Машиностроение, Ленингр. отд-ние, 1983. - 160 с.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения хромсодержащих порошков из стали Х13 в бутиловом спирте | 2021 |
|
RU2758613C1 |
Способ получения кобальто-хромовых порошков электроэрозионным диспергированием | 2018 |
|
RU2681237C1 |
Способ получения порошка тяжелых вольфрамовых псевдосплавов электроэрозионным диспергированием отходов сплава ВНЖ в керосине | 2020 |
|
RU2747205C1 |
Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной | 2019 |
|
RU2699479C1 |
Способ получения твердосплавного порошка из отходов сплава Т30К4 в дизельном топливе | 2024 |
|
RU2824153C1 |
Способ получения коррозионностойких порошков из стали Х17 в керосине | 2020 |
|
RU2735844C1 |
Способ получения порошка молибдена электроэрозией молибденовых отходов | 2023 |
|
RU2804892C1 |
СПОСОБ ПОЛУЧЕНИЯ СТАЛЬНЫХ ПОРОШКОВ ЭЛЕКТРОЭРРОЗИОННЫМ ДИСПЕРГИРОВАНИЕМ ОТХОДОВ ШАРИКОПОДШИПНИКОВОЙ СТАЛИ В ВОДЕ | 2015 |
|
RU2597443C1 |
Способ получения безвольфрамового твердосплавного порошка из отходов сплава ТН20 в изопропиловом спирте | 2024 |
|
RU2824011C1 |
Способ изготовления жаропрочного никелевого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ЖС6У в дистиллированной воде | 2022 |
|
RU2807399C1 |
Изобретение относится к получению вольфрамотитанокобальтовых порошков из отходов сплава Т30К4. Ведут электроэрозионное диспергирование отходов сплава Т30К4 в спирте при напряжении на электродах 110…120 В, ёмкости разрядных конденсаторов 48 мкФ и частоте следования импульсов 130...140 Гц. Обеспечивается снижение энергетических затрат при экологической чистоте процесса. 4 ил., 3 пр.
Способ получения вольфрамотитанокобальтовых порошков из отходов сплава Т30К4 в спирте, отличающийся тем, что порошки получают путем электроэрозионного диспергирования сплава Т30К4 в спирте при напряжении на электродах 110…120 В, ёмкости разрядных конденсаторов 48 мкФ и частоте следования импульсов 130...140 Гц.
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ПОРОШКА (ВАРИАНТЫ) | 2006 |
|
RU2332280C2 |
Способ получения порошка титана методом электроэрозионного диспергирования | 2016 |
|
RU2631549C1 |
US 20070101823 A1, 10.05.2007. |
Авторы
Даты
2019-12-18—Публикация
2019-09-26—Подача