Изобретение относится к новому соединению класса люминофоров с общей формулой АВС(ВО3)2, где А, В, С - катионы щелочных, щелочноземельных и редкоземельных металлов, в частности, к неодимовому ортоборату калия-кальция состава KCaNd(BC3)2, обладающего фотолюминесцентными свойствами.
В настоящее время большое количество работ направлено на разработку материалов, используемых в качестве экологически чистых источников света и люминофоров нового поколения. Одним из перспективных классов таких материалов являются бораты, которые имеют очень высокую химическую стабильность, термическую и радиационную стойкость, широкую область прозрачности, высокий порог лазерного разрушения. Кроме того, бораты обладают широким разнообразием химического состава и кристаллической структуры, что коррелирует со способностью атома бора образовывать различные анионные (ВО3, ВО4) и полианионные группы (В2О6, В5О10 и др.). Согласно теории анионных групп [Chen С., Sasaki Т., Li R., Wu Z., Lin Z., Mori Y., Hu Z., Wang J., Uda S., Yoshimura M., Kaneda Y. Nonlinear Optical Borate Crystals, Principles and Applications.// Wiley-VCH Verlag GmbH & Co. KGaA, 2012, P. 387] соединения с изолированными [ВО3]-треугольниками и [ВО4]-тетраэдрами перспективны для использования в широком спектральном диапазоне от глубокого УФ до ближнего ИК. Можно отметить, что в последние годы проводятся многочисленные исследования по синтезу и изучению физико-химических свойств новых трехкатионных ортоборатов, включающих в свой состав редкоземельные, щелочноземельные и щелочные металлы одновременно.
При замещении катиона Ва на Sr в ортоборатах KBaR(BO3)2 нами синтезированы новые люминофоры семейства KSrR(BO3)2 [А.Е. Kokh, N.G. Kononova, V.S. Shevchenko, Yu.V. Seryotkin, b, A.K. Bolatov, Kh.A. Abdullin, B.M. Uralbekov, M. Burkitbayev. Syntheses, crystal structure and luminescence properties of the novel isostractural KSrR(BO3)2 with R=Y, Yb, Tb// Journal of Alloys and Compounds 711, 2017, P. 440-445; а также фотолюминесцентный материал редкоземельного ортобората формульного состава KSrTb(ВО3)2, излучающий свет в диапазоне от 355 нм до 620 нм [Евразийский патент №025559, МПК: C09K 11/88, C09K 11/63, C09K 11/55, опубл. 2017.01.30].
Нами установлено, что благодаря возможности замещения в катионной позиции KSrTb(BO3)2 Sr на Са и Tb на Nd можно получать новые люминофоры, превосходящие по своим функциональным свойствам используемые в настоящее время. Такие материалы - потенциальные носители новых физико-химических свойств. Тип структуры, а, следовательно, и свойства, будут зависеть от размеров катионов, входящих в этот кристалл. Замещение Sr на Са приводит к переходу структуры из моноклинной в орторомбическую, а замещение Tb на Nd приводит к получению фотолюминесцентного материала с излучением в ИК области спектра.
Таким образом, задача расширения арсенала материалов, обладающих фотолюминесцентными свойствами является актуальной.
Поставленная задача решена путем использования редкоземельного ортобората формульного состава KCaNd(BO3)2 в качестве фотолюминесцентного материала, излучающего свет в диапазоне от 850 нм до 1080 нм и имеющего пространственную группу Pbca орторомбической сингоний, параметры решетки , , Z=8.
Поставленная задача решена также в способе получения фотолюминесцентного материала редкоземельного ортобората формульного состава KCaNd(BO3)2 твердофазным синтезом, включающим приготовление исходной смеси компонентов, взятых в соотношении с формульным составом KCaNd(BO3)2, содержащих, соответственно, мол.%: карбонат калия K2CO3 - 12,5%; карбонат кальция CaCO3 - 25%; борную кислоту Н3ВО3 - 50% и оксид редкоземельного элемента неодима Nd2O3 - 12,5%, отжиг исходной смеси при температуре 650°C в течение суток, перетирание, таблетирование отожженного порошка и повторный нагрев до 850°C с выдержкой в течение 8-12 ч.
На фиг. 1 представлена структура KCaNd(BO3)2, показывающая координацию атомов Nd (слой А) и Са, K (слой Б); на фиг. 2 - спектр люминесценции KCaNd(BO3)2; на фиг. 3 - рентгенограммы KCaNd(BO3)2: а - для порошка (х - примесь CaNdBO4); 6 - для таблетки; в - расчетная.
Соединение KCaNd(BO3)2 кристаллизуется в орторомбической сингоний с пространственной группой Pbca и параметрами элементарной ячейки , , Z=8. Типичная двухслойная структура этого соединения показана на фиг. 1. Все атомы бора данного соединения имеют одну координацию изолированных BO3-треугольников, которые ориентированы перпендикулярно оси с для слоя А и вдоль для слоя В. Слой А сформирован NdO9-полиэдрами соединенными BO3-треугольниками, слой В СаО6- и КO8-полиэдрами также соединенными BO3-треугольниками.
Спектр фотолюминесценции KCaNd(ВО3)2 при комнатной температуре, возбуждаемый УФ-излучением с длиной волны 355 нм, приведенный на фиг. 2, состоит из двух полос в спектральных диапазонах 850-950 нм и 1040-1080 нм, соответствующих электронным переходам с метастабильного уровня неодима 4F3/2 на уровни терма 4IJ. Наиболее интенсивные пики в спектре люминесценции на переходах 4F3/2→4I9/2 и 4F3/2→4I11/2 приходятся на 880 и 1060 нм, соответственно.
Предлагаемое техническое решение иллюстрируется следующим примером.
Пример. Твердофазный синтез проводился из смеси компонентов, взятых в соотношении с формульным составом KCaNd(ВО3)2, содержащих, соответственно, мол.%: карбонат калия K2CO3 - 12,5%; карбонат кальция СаСО3 - 25%; борную кислоту Н3ВО3 - 50% и оксид редкоземельного элемента неодима Nd2O3 - 12,5%. Исходную шихту перетирали для получения однородной смеси и загружали в платиновый тигель. Тигель помещали в нагревательную установку при температуре 650°С и выдерживали в течение суток для удаления Н2О и СО2. После отжига продукт синтеза тщательно перетирали и прессовали в таблетку. Прессование таблетки производилось на гидравлическим прессе с давлением 50 кг/см2. Таблетку (диаметр 10 мм, высота 1,5 мм) помещали в тигель и ступенчато повышали температуру на 50°С. Время выдержки составляло 8-12 ч. Синтезированные при разных температурах образцы исследовали с помощью рентгенофазового анализа (РФА). Соединение KCaNd(ВО3)2 получено при температуре 850°С (фиг. 3б). Критерием завершенности твердофазной реакции являлось отсутствие примесных фаз на рентгенограмме образца. Рентгенограмма KCaNd(ВО3)2 хорошо согласуется с расчетной (фиг. 3в).
При синтезе KCaNd(ВО3)2 традиционным твердофазным синтезом из исходной смеси компонентов на рентгенограммах порошков, отожженных при 850°С наблюдаются примеси промежуточных продуктов реакции, а при 900°С примесь продукта разложения - CaNdBO4 (фиг. 3а).
При таблетировании порошка увеличивается контактная поверхность и ускоряется взаимодействие между реагирующими компонентами. Это позволяет снизить температуру твердофазного синтеза до 850°С и получить соединения KCaNd(ВО3)2.
Таким образом, открытием нового люминофора KCaNd(ВО3)2 решается задача расширения арсенала материалов, обладающих фотолюминесцентными свойствами, и найден способ его получения твердофазным синтезом из таблетированных образцов при 850°С.
название | год | авторы | номер документа |
---|---|---|---|
Фотолюминесцентный материал на основе сложного бората | 2019 |
|
RU2723028C1 |
Фотолюминесцентный материал состава NaSrYb(BO) и способ его получения | 2021 |
|
RU2786154C1 |
Фотолюминесцентный материал скандобората самария SmSc(BO) | 2020 |
|
RU2753258C1 |
Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения | 2020 |
|
RU2759536C1 |
Кристаллический материал для регистрации рентгеновского излучения | 2016 |
|
RU2630511C1 |
Способ выращивания кристалла из испаряющегося раствор-расплава | 2019 |
|
RU2732513C1 |
Материал для дихроичной поляризации света - кристалл LiBa(BO)F | 2016 |
|
RU2615691C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ РАСТВОР-РАСПЛАВА ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ β-BABO | 2001 |
|
RU2195520C1 |
Способ получения диопсидного стекла (варианты) | 2019 |
|
RU2712885C1 |
КРАСНОИЗЛУЧАЮЩИЙ ФОТОЛЮМИНОФОР ДЛЯ ЭКРАНОВ ПЛАЗМЕННЫХ ПАНЕЛЕЙ | 2017 |
|
RU2693781C2 |
Изобретение может быть использовано при изготовлении экологически чистых источников света. Сначала готовят исходную смесь следующих компонентов, мол.%: карбонат калия K2CO3 - 12,5; карбонат кальция CaCO3 - 25; борную кислоту Н3ВО3 - 50 и оксид редкоземельного элемента неодима Nd2O3 - 12,5. Полученную смесь отжигают при 650°C в течение суток. Затем отожженный порошок перетирают, таблетируют, повторно нагревают до 850°C и выдерживают при этой температуре 8-12 ч. Полученный фотолюминесцентный материал редкоземельного ортобората имеет состав KCaNd(BO3)2, пространственную группу Pbca орторомбической сингонии, параметры решетки , Z=8 и излучает свет в диапазоне 850-1080 нм. Изобретение позволяет расширить арсенал материалов, обладающих фотолюминесцентными свойствами. 2 н.п. ф-лы, 3 ил.
1. Фотолюминесцентный материал редкоземельного ортобората состава KCaNd(BO3)2, излучающий свет в диапазоне от 850 нм до 1080 нм, имеющий пространственную группу Pbca орторомбической сингонии и параметры решетки , Z=8.
2. Способ получения фотолюминесцентного материала редкоземельного ортобората состава KCaNd(BO3)2 твердофазным синтезом, включающим приготовление исходной смеси компонентов, содержащих, соответственно, мол.%: карбонат калия K2CO3 - 12,5%; карбонат кальция CaCO3 - 25%; борную кислоту Н3ВО3 - 50% и оксид редкоземельного элемента неодима Nd2O3 - 12,5%, отжиг исходной смеси при температуре 650°C в течение суток, перетирание, таблетирование отожженного порошка и повторный нагрев до 850°C с выдержкой в течение 8-12 ч.
Золотопромывательный аппарат для разведочных и старательских работ | 1930 |
|
SU25559A1 |
КРАСНОИЗЛУЧАЮЩИЙ ФОТОЛЮМИНОФОР ДЛЯ ЭКРАНОВ ПЛАЗМЕННЫХ ПАНЕЛЕЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2001 |
|
RU2236432C2 |
EP 2962530 B1, 03.05.2017. |
Авторы
Даты
2019-12-24—Публикация
2019-04-11—Подача