Изобретение относится к соединениям скандоборатов с общей формулой RSc(BO3)2, где R - катионы редкоземельных элементов (РЗЭ).
Будущий прогресс в науке и технике связан с внедрением новых материалов, поиск которых остается актуальной задачей до сегодняшнего дня. Одним из перспективных направлений является открытие и исследование новых сложных боратов РЗЭ, которые обладают высокой химической стабильностью, термической стойкостью и широкой областью прозрачности. Детальное изучение фазовых диаграмм RBO3-ScBO3 (R=La-Lu) приводит к обнаружению новых соединений с различным типом структуры, которые позволяют расширить класс люминофоров и нелинейно-оптических материалов, обладающих новыми интересными функциональными свойствами.
Скандобораты самария обладают целым комплексом функциональных свойств. Известно, что простые редкоземельные ортобораты SmBO3, изоструктурные кальциту, представляют собой перспективные материалы для люминофоров. Однако высокая концентрация Sm в составе SmBO3 способствует эффекту концентрационного тушения. Это явление связано со взаимодействием активных атомов друг с другом и на прямую зависит от расстояния между ними. В системе SmBO3 - ScBO3 существует соединение SmSc3(BO3)4 аналогично RSc3(ВО3)4, где R=La-Nd. [Durmanov, S. Т., et al., Binary Rare-Earth Scandium Borates for Diode-Pumped Lasers. Optical Materials 2001, 18, 243-284]. При выращивании кристаллов этого соединения на платиновую петлю из флюса 0.59LiBO2-0.41LiF при температуре 940°С получена низкотемпературная нецентросимметричная моноклинная фаза SmSc3(ВО3)4 с перемененным составом, стабильность структуры которой связана с частичным замещением Sm в позициях Sc, и ее формульный состав можно выразить в виде SmxSc4-x(BO3)4, где 0.88≤x≤1 [Kuznetsov, А. В., et al., Polymorphism in SmSc3(BO3)4: Crystal Structure, Luminescent and SHG Properties. Journal of Alloys and Compounds 27.08.2020, 851, 156825]. Материалы на основе высокотемпературной и низкотемпературной модификаций SmSc3(ВО3)4 обладают как нелинейно-оптическими, так и фотолюминесцентными свойствами. При исследовании системы SmBO3-ScBO3 методом твердофазного синтеза было получено новое соединение SmSc(BO3)2, аналогичное соединениям, обнаруженным в системах RBO3-ScBO3(R=Ho-Lu), кристаллизующие в структуре кальцита с пространственной группой [Doi, Y.; Satou, Т.; Hinatsu, Y., Crystal Structures and Magnetic Properties of Lanthanide Containing Borates LnM(BO3)2 (Ln=Y, Ho-Lu; M=Sc, Cr). Journal of Solid State Chemistry 2013, 206, 151-157].
Технической проблемой, решение которой обеспечивается при осуществлении изобретения, является расширение арсенала материалов на основе скандоборатов самария, обладающих фотолюминесцентными свойствами
Техническим результатом изобретения является получение нового скандобората состава SmSc(BO3)2 в системе SmBO3 - ScBO3.
Технический результат достигнут получением редкоземельного скандоборта самария SmSc(BO3)2, кристаллизующегося в тригональной сингонии с пространственной группой и параметрами элементарной ячейки а = 4.8923(4) , с = 16.3003(13) , обладающего способностью излучать свет от 566 до 708 нм, и выращенный методом спонтанной кристаллизации из смеси исходных компонентов, взятых в стехиометрическом соотношении.
Получен новый скандоборат SmSc(BO3)2, в котором частичное замещение Sm на Sc позволяет снизить концентрацию самария в фотолюминесцентном материале и избежать эффекта концентрационного тушения.
На фиг. 1 представлена термограмма: SmSc(BO3)2, на фиг. 2 - структура SmSc(BO3)2, кристаллизующегося в тригональной сингонии с пространственной группой с параметрами элементарной ячейки а = 4.8923(4) , с = 16.3003(13) ; на фиг. 3 - спектры люминесценции: а) SmSc(BO3)2, б) SmBO3 при комнатной температуре, возбуждаемый УФ-излучением с длиной волны 405 нм.
По данным ДТА температура плавления SmSc(BO3)2 соответствует 1400°С. Конгруэнтный характер плавления позволяет получать поликристаллические образцы из собственного расплава.
В структуре SmSc(BO3)2 атомы Sm и Sc занимают общую октаэдрическую позицию (Sm, Sc)O6 и формируют слои перпендикулярные с (фиг. 2а). В этих слоях октаэдры соединяются посредством плоских ВО3 треугольников (фиг. 2б), а слои между собой соединяются через общий кислород. Таким образом, среднее расстояние Sm - О - Sc составляет 3,92 , позволяющее предполагать минимальное взаимодействие между атомами РЗЭ.
Спектр люминесценции для SmSc(BO3)2 (фиг. 3а) имеет несколько типичных пиков, расположенных на 566, 602, 645, и 708 нм, которые соответствуют 4G5/2 → 6HJ (J=5/2, 7/2, 9/2 и 11/2) переходам. Два наиболее сильных пика люминесценции расположены на 602 и 645 нм и соответствуют 4G5/2 → 6Н7/2 и 4G5/2 → 6H5/2 переходам. Соединение SmBO3 не люминесцирует (фиг. 3б) из-за характерного для него концентрационного тушения.
Предлагаемое техническое решение иллюстрируется следующим примером, в котором описан способ получения поликристаллического образца SmSc(BO3)2, выращенного методом спонтанной кристаллизации из расплава исходных компонентов, взятых в стехиометрическом соотношении.
Пример. Исходную смесь, состоящую из компонентов, содержащих, соответственно: оксид самария Sm2O3-6,27 г, оксид скандия Sc2O3-247 г и борную кислоту H3BO3-2,24 г, перетирали и загружали в платиновый тигель.
Тигель помещали в печь и нагревали до 1450°С со скоростью 50 град/ч. Из полученного расплава, перегретого для гомогенизации выше температуры плавления на 50 градусов, выращивали поликристаллические образцы, охлаждением до 1350°С со скоростью 20 град/ч с последующей закалкой до комнатной температуры.
Экспериментально для выращивания поликристаллических образцов определили ростовой температурный интервал от 1450°С до 1350°С. Согласно результатам твердофазного синтеза SmSc(BO3)2 фазовое равновесие не достигается даже при температурах близких к температуре плавления. На рентгенограмме отожженного образца при 1350°С с многократными перешихтовками и выдержкой в течение 5 суток идентифицировались примесные пики соединений SmSc3(ВО3)4 и SmBO3. Получение беспримесного SmSc(BO3)2 было достигнуто только после полного плавления синтезированного образца при 1450°С.
Экспериментальным путем найдены оптимальные условия для получения беспримесного поликристаллического образца соединения SmSc(BO3)2, кристаллизующегося в тригональной сингонии с пространственной группой и параметрами элементарной ячейки а = 4.8923(4) , с = 16.3003(13) .
Таким образом, созданием нового соединения SmSc(BO3)2 решается задача расширения арсенала материалов, в частности, для скандоборатов самария, обладающих фотолюминесцентными свойствами.
название | год | авторы | номер документа |
---|---|---|---|
Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения | 2020 |
|
RU2759536C1 |
Фотолюминесцентный материал на основе сложного бората | 2019 |
|
RU2723028C1 |
Фотолюминесцентный материал состава NaSrYb(BO) и способ его получения | 2021 |
|
RU2786154C1 |
ФОТОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ РЕДКОЗЕМЕЛЬНОГО ОРТОБОРАТА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2019 |
|
RU2710191C1 |
Кристаллический материал для регистрации рентгеновского излучения | 2016 |
|
RU2630511C1 |
Материал для дихроичной поляризации света - кристалл LiBa(BO)F | 2016 |
|
RU2615691C1 |
Способ выращивания кристалла из испаряющегося раствор-расплава | 2019 |
|
RU2732513C1 |
Дихроичный материал - фторидоборат с "антицеолитной" структурой | 2018 |
|
RU2689596C1 |
СПОСОБ ИССЛЕДОВАНИЯ ФАЗОВЫХ ПРЕВРАЩЕНИЙ | 2002 |
|
RU2229702C2 |
Способ выращивания кристалла трибората лития (варианты) | 2018 |
|
RU2681641C1 |
Изобретение относится к фотолюминесцентному материалу на основе скандобората самария формулы SmSc(BO3)2, излучающего свет от 566 до 708 нм, кристаллизующегося в тригональной сингонии с пространственной группой с параметрами элементарной ячейки а = 4.8923(4) , с = 16.3003(13) . Скандоборат выращен методом спонтанной кристаллизации из собственного расплава смеси исходных компонентов, взятых в стехиометрическом соотношении. Изобретение обеспечивает расширение арсенала материалов, обладающих фотолюминесцентными свойствами. 3 ил., 1 пр.
Фотолюминесцентный материал на основе скандобората самария SmSc(BO3)2, излучающий свет от 566 до 708 нм, кристаллизующийся в тригональной сингонии с пространственной группой с параметрами элементарной ячейки а = 4.8923(4) , с = 16.3003(13) , выращенный методом спонтанной кристаллизации из расплава исходных компонентов, взятых в стехиометрическом соотношении.
DOI Y | |||
et al., Crystal Structures and Magnetic Properties of Lanthanide Containing Borates LnM(BO3)2 (Ln=Y, Ho-Lu; M=Sc, Cr), Journal of Solid State Chemistry, 2013, v | |||
Гидравлический способ добычи торфа | 1916 |
|
SU206A1 |
Двухколейная подвесная дорога | 1919 |
|
SU151A1 |
KUZNETSOV A.B | |||
et al., Polymorphism in SmSc3(BO3)4: Crystal structure, luminescent and SHG properties, Journal of Alloys and Compounds, 27.08.2020, v | |||
Приспособление для подачи коробок в машинах для наполнения коробок | 1925 |
|
SU851A1 |
Авторы
Даты
2021-08-12—Публикация
2020-12-28—Подача