Состав для наплавки детали Российский патент 2020 года по МПК B23K35/30 B23K9/04 

Описание патента на изобретение RU2711488C1

Изобретение относится к области аргонодуговой наплавки и может быть применено для наплавки уплотнительных поверхностей деталей трубопроводной и запорной арматуры из хромоникельмолибденовых сталей аустенитно-ферритного класса, работающей в условиях повышенного износа и коррозии.

Известен сплав для наплавки деталей (авт. св. СССР №464424 опубл.), содержащий следующие компоненты, мас. %:

кремний 0,2-0,3 углерод 0,02-0,12 марганец 0,5-1,0 молибден 15,0-20,0 хром 19,0-21,0 бор 2,8-3,2 железо 4,0-5,0 никель остальное.

Недостатком данного сплава является ограниченная область применения при использовании в условиях повышенного износа и коррозионного воздействия, что обусловлено низкой стойкостью к воздействию агрессивных сред (плава карбамида, аммиака газообразного и жидкого, аммиачной селитры) при нормальных и повышенных температурах.

Известен состав для сварки и наплавки коррозионно-стойких сталей (Патент RU №2000184 опубл.), содержащий следующие компоненты, мас. %:

углерод 0,02-0,2 кремний 0,2-0,5 марганец 0,3-0,7 хром 11,0-14,0 никель 1,0-4,0 железо остальное.

Недостатком данного состава является его низкая стойкость при применении в условиях повышенного износа и коррозионного воздействия при нормальных и повышенных температурах, обусловленная тем, что при относительно низком содержании марганца не удается обеспечить сохранение содержания хрома (более 13%).

Прототипом изобретения является состав для наплавки уплотнительных поверхностей деталей трубопроводной арматуры (ОСТ 26-07-2054-83), который содержит следующие компоненты, мас. %:

углерод 0,06-0,12 кремний 0,5 марганец 0,5 хром 30,0-33,0 никель 7,0-9,0 молибден 1,8-2,4 азот 0,3 железо остальное.

Недостатком данного состава является низкая стойкость наплавленного металла в условиях повышенного износа и коррозионного воздействия при нормальных и повышенных температурах, обусловленная повышенным содержанием углерода, который способствует возникновению межкристаллитной коррозии.

Задачей является создание состава для наплавки для аргонодуговой сварки, обеспечивающего повышение механических и эксплуатационных свойств наплавленного слоя в условиях повышенного износа и коррозионного воздействия.

Техническим результатом изобретения является повышение прочности сцепления наплавленного сплава с основным металлом, а также повышение твердости, стойкости к межкристаллитной коррозии и износостойкости наплавленного металла.

Технический результат достигается тем, что состав для аргонодуговой наплавки содержит углерод, кремний, марганец, хром, никель, молибден, азот, железо, при этом дополнительно содержит кобальт, титан, церий и медь при следующем соотношении компонентов, мас. %:

углерод 0,02-0,06 кремний 0,2-0,8 марганец 0,5-1,2 хром 25,0-29,0 никель 5,0-8,0 молибден 2,5-3,5 азот 0,05-0,3 кобальт 0,15-0,4 титан 0,25-0,5 церий 0,01-0,1 медь 1,25-2,5 железо остальное.

Наличие в составе для наплавки углерода способствует эффективному образованию аустенита, содержание которого стабилизирует феррит, наличие которого достигается путем введения в состав для наплавки никеля.

Марганец в предлагаемом составе обеспечивает растворимость азота, что в свою очередь приводит к повышению твердости, износостойкости и коррозионной стойкости наплавленного слоя.

Введение комбинации хрома и молибдена способствует повышению устойчивости наплавляемого слоя к межкристаллитной коррозии, а также повышению его твердости и износостойкости. Это обусловлено тем, что легирование наплавленного металла молибденом и хромом способствует упрочнению матрицы карбидами молибдена и хрома, а также интерметаллидами, повышающими твердость и износостойкость наплавки. Кроме того, молибден, растворимый в феррите наплавленного металла, являясь поверхностно-активным элементом (по отношении к железу), препятствует выделению карбидов и интерметаллидов по границам зерен, что улучшает коррозионную стойкость наплавленного слоя.

Кремний в предлагаемом составе является раскислительным элементом, обеспечивающем низкий уровень кислородсодержащих вкраплений в наплавляемом слое. Его содержание в предлагаемом составе в указанном диапазоне позволяет достичь оптимальный уровень литейных и наплавочных свойств, что способствует повышению качества наплавленного слоя.

Введение титана в состав для наплавки обеспечивает связывание избыточного углерода с образование карбидов титана, характеризующихся высокой твердостью и коррозионной стойкостью. Хром также связывается с углеродом с образованием карбидов хрома. Карбиды титана и хрома легируют матрицу сплава, способствуя увеличению твердости и износостойкости. При этом дополнительное введение в состав для наплавки меди в заявляемом диапазоне позволяет при сохранении твердости и износостойкости, также увеличить стойкость наплавляемого слоя к межкристаллитной коррозии, так как соединения меди, хрома и титана способствуют образованию устойчивой коррозионностойкой пленки, которая препятствует проникновению коррозии во внутренние слои наплавленной детали.

Таким образом, в предложенном составе для наплавки деталей происходит связывание углерода в карбиды титана и карбиды хрома, что повышает стойкость наплавленного слоя к межкристаллитной коррозии в агрессивных средах.

Дополнительное введение в состав для наплавки кобальта, находящегося в твердом растворе, способствует упрочнению металлической основы, увеличению растворимости сложных высоколегированных карбидов, вследствие чего происходит обогащение основы наплавленного слоя углеродом, титаном и хромом, вследствие чего повышается прочность сцепления наплавленного сплава с основным металлом, увеличивается эффект дисперсионного твердения, что обеспечивает повышение твердости износостойкости наплавляемого состава после термической обработки. Фактором, влияющим на повышение адгезии, является повышение проникающей способности сварочного состава в основу.

Введение в состав для наплавки церия обеспечивает связывание избыточного углерода, исключение неравномерного распределения хрома, т.е. уменьшение выделений хрома по границам зерен наплавляемого состава и обеднения пограничных участков при наплавке, что позволяет исключить возможность формирования неравномерной твердости, и обеспечить повышение износостойкости.

Таким образом, заявляемый состав для наплавки, с указанными диапазонами количественных показателей компонентов, характеризуется высокой прочностью сцепления наплавленного сплава с основным металлом, а также высокой твердостью, стойкостью к межкристаллитной коррозии и высокой износостойкостью наплавленного металла.

Для дальнейших исследований были изготовленные литые прутки диаметром 5 мм и длиной 270 мм, где использовался лом стали марки 03Х17Н13М3Т и ферросплавы, химический состав которых представлен в таблице 1.

Из предлагаемого состава были изготовлены прутки, которые были наплавлены аргонодуговой сваркой запорные органы - седло, клапан дроссельной и запорной арматуры, работающие в условиях плава карбамида, при давлении до 20 Мпа и температуре 200°С, аммиака газообразного и жидкого, аммиачной селитры. Также на деталь была осуществлена наплавка состава по прототипу.

Полученные образцы были подвергнуты испытаниям на стойкость к межкристаллитной коррозии, на износостойкость и твердость.

При этом испытания на стойкость к межкристаллитной коррозии осуществляли по методу ДУ (ГОСТ 6032-2003) - наплавляют цилиндрический образец на круг из стали марки 03Х17Р13М3Т диаметром 25-30 мм высотой 3-5 мм, затем термически обрабатывают и шлифуют.

Для исследования износостойкости наплавляют образец на круг из стали марки 03Х17Р13М3Т диаметром 25-30 мм высотой не менее 40-50 мм, затем разрезают на диски диаметром 20-25 мм и высотой 3-4 мм.

Испытания на твердость после наплавки 4-5 слоев после их термической обработки производят на пластину их стали марки 03Х17Н13М3Т размером 40×15×6 мм в количестве не менее трех образцов.

Результаты исследований представлены в таблице 2.

Таким образом, предлагаемый состав для наплавки позволяет повысить механические и эксплуатационные свойства наплавленного слоя в условиях повышенного износа и коррозионного воздействия, за счет повышения прочности сцепления наплавленного сплава с основным металлом, а также повышения твердости, стойкости к межкристаллитной коррозии и износостойкости наплавленного металла.

Похожие патенты RU2711488C1

название год авторы номер документа
Состав для наплавки детали 2018
  • Назарько Александр Сергеевич
  • Пломодьяло Роман Леонидович
  • Демонов Марк Сергеевич
RU2705273C1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2003
  • Богоявленский А.В.
  • Шарыпов А.З.
RU2237741C1
ПОРОШКОВАЯ ПРОВОЛОКА 2011
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
RU2467855C1
Состав для наплавки 2020
  • Назарько Александр Сергеевич
  • Пломодьяло Роман Леонидович
  • Озолин Александр Витальевич
  • Обозний Вадим Сергеевич
RU2752721C1
Состав для наплавки 2020
  • Назарько Александр Сергеевич
  • Пломодьяло Роман Леонидович
  • Озолин Александр Витальевич
  • Обозний Вадим Сергеевич
RU2752057C1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2003
  • Богоявленский А.В.
  • Шарыпов А.З.
RU2264479C2
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАПЛАВКИ 2005
  • Березовский Александр Владимирович
  • Балин Александр Николаевич
  • Степанов Борис Валентинович
  • Груздев Александр Яковлевич
  • Краева Людмила Владимировна
  • Назаров Виктор Петрович
RU2294273C2
ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1996
  • Копылов А.Г.
  • Дубровский В.А.
RU2112069C1
СТАЛЬ 2012
  • Лосев Александр Сергеевич
  • Еремин Евгений Николаевич
  • Еремин Андрей Евгеньевич
  • Маталасова Арина Евгеньевна
RU2514901C2
ЭЛЕКТРОД ДЛЯ ИЗНОСОСТОЙКОЙ НАПЛАВКИ И СПОСОБ СОЗДАНИЯ ИЗНОСОСТОЙКОГО СЛОЯ НА ПОВЕРХНОСТИ МЕТАЛЛУРГИЧЕСКОГО ОБОРУДОВАНИЯ НАПЛАВКОЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕКТРОДОВ 2010
  • Комков Александр Алексеевич
  • Ханак Леонид Владимирович
  • Пушменков Олег Сергеевич
  • Вихарева Марина Дмитриевна
  • Кононов Владимир Вячеславович
RU2465111C2

Реферат патента 2020 года Состав для наплавки детали

Изобретение может быть использовано для аргонодуговой наплавки уплотнительных поверхностей деталей трубопроводной и запорной арматуры из хромоникельмолибденовых сталей аустенитно-ферритного класса, работающих в условиях повышенного износа и коррозии. Состав содержит компоненты в следующем соотношении, мас.%: углерод 0,02-0,06, кремний 0,2-0,8, марганец 0,5-1,2, хром 25,0-29,0, никель 5,0-8,0, молибден 2,5-3,5, азот 0,05-0,3, кобальт 0,15-0,4, титан 0,25-0,5, церий 0,01-0,1, медь 1,25-2,5, железо - остальное. Техническим результатом изобретения является повышение прочности сцепления наплавленного сплава с основным металлом, а также повышение твердости, стойкости к межкристаллитной коррозии и износостойкости наплавленного металла. 2 табл.

Формула изобретения RU 2 711 488 C1

Состав для аргонодуговой наплавки, содержащий углерод, кремний, марганец, хром, никель, молибден, азот и железо, отличающийся тем, что он дополнительно содержит кобальт, титан, церий и медь при следующем соотношении компонентов, мас.%:

углерод 0,02-0,06 кремний 0,2-0,8 марганец 0,5-1,2 хром 25,0-29,0 никель 5,0-8,0 молибден 2,5-3,5 азот 0,05-0,3 кобальт 0,15-0,4 титан 0,25-0,5 церий 0,01-0,1 медь 1,25-2,5 железо остальное

Документы, цитированные в отчете о поиске Патент 2020 года RU2711488C1

Состав сварочной проволоки 1976
  • Степин В.С.
  • Старченко Е.Г.
  • Рунов А.Е.
  • Зиновьев С.А.
  • Лобода А.С.
  • Барабанов С.П.
  • Берман Л.И.
  • Могильнер М.Н.
  • Гутнов Р.Б.
  • Диомидова А.А.
  • Николаев И.К.
  • Орехов Н.Д.
  • Чернышев В.В.
SU597533A1
RU 2004118331 А, 10.01.2006
СОСТАВ СВАРОЧНОЙ ЛЕНТЫ И ПРОВОЛОКИ 2000
  • Горынин И.В.
  • Карзов Г.П.
  • Галяткин С.Н.
  • Михалева Э.И.
  • Воловельский Д.Э.
  • Морозовская И.А.
  • Юрчак А.В.
  • Волков В.В.
  • Петров В.В.
  • Серебренников Г.С.
RU2188109C2
МАЛОАКТИВИРУЕМЫЙ КОРРОЗИОННО-СТОЙКИЙ СВАРОЧНЫЙ МАТЕРИАЛ 2008
  • Рыбин Валерий Васильевич
  • Карзов Георгий Павлович
  • Галяткин Сергей Николаевич
  • Щербинина Наталья Борисовна
  • Бурочкина Ирина Михайловна
  • Зубова Галина Евстафьевна
  • Лапин Александр Николаевич
RU2383417C1
СВАРОЧНАЯ ПРОВОЛОКА ДЛЯ СВАРКИ РАЗНОРОДНЫХ СТАЛЕЙ 2015
  • Лужанский Илья Борисович
  • Ходаков Вячеслав Дмитриевич
  • Ходаков Дмитрий Вячеславович
RU2595305C1

RU 2 711 488 C1

Авторы

Назарько Александр Сергеевич

Пломодьяло Роман Леонидович

Демонов Марк Сергеевич

Даты

2020-01-17Публикация

2018-12-28Подача