Состав для наплавки Российский патент 2021 года по МПК B23K35/30 C23C4/08 C22C38/22 

Описание патента на изобретение RU2752721C1

Изобретение относится к сварочному производству и может быть использовано для аргонодуговой наплавки рабочих органов почвообрабатывающих сельскохозяйственных машин, работающих в условиях динамических нагрузок и абразивного износа.

Известен порошковый сплав для наплавки лемехов посредством токов высокой частоты (авт. св. СССР №277976 опубл.), содержащий следующие компоненты, мас. %:

хром 38,0-44,0 углерод 5,0-5,5 кремний 2,0-2,6 марганец до 1,5 никель 1,0-1,8 железо остальное

Недостатком данного сплава является то, что из-за высокого содержания углерода и хрома прочность сцепления твердого сплава с основным металлом низкая, а сплав склонен к образованию микротрещин и хрупкому разрушению.

Известен наплавочный порошок на железной основе (Патент RU №2696119 опубл.), содержащий следующие компоненты, мас. %:

углерод 4,3-4,6 хром 3,1-3,5 кремний 2,2-2,6 марганец 3,4-3,7 никель 1,2-1,4 бор 3,1-3,2 железо остальное

Однако в данном наплавочном порошке содержание таких легирующих элементов как углерод, бор и кремний в указанных диапазонах способствует образованию заэвтектической структуры, насыщенной избыточными карбидами, вследствие чего наплавленный слой имеет твердость 62…64 HRc и сопротивление ударным нагрузкам порядка 30…35 ударов до разрушения. В результате этого упомянутый наплавочный порошок непригоден для наплавки деталей, работающих в условиях динамических нагрузок и абразивного износа.

Прототипом изобретения является СОРМАЙТ сплав наплавочный прутковый и порошкообразный (ГОСТ 11545-65), который содержит следующие компоненты, мас. %:

хром 25,0-31,0 никель 3,0-5,0 углерод 2,5-3,3 кремний 2,8-3,5 марганец до 1,5 сера до 0,07 фосфор до 0,08 железо остальное

Недостатком данного сплава является то, что для повышения твердости, прочности и износостойкости наплавленному слою необходимо проводить термическую обработку. Содержание же углерода и кремния в указанных диапазонах приводит к росту микронапряжений в металлической матрице и, как следствие, повышенному абразивному износу и сколам при динамических нагрузках. Кроме того, в сплаве присутствует сера, которая является вредной примесью, и содержание ее в составе не допускается более, чем 0,05 мас. %. Сера, вступая во взаимодействие с железом, образует сернистое железо (Fe2S3), которое имеет температуру плавления более низкую, чем у сплава, и является труднорастворимым в расплавленном металле. В процессе кристаллизации сплава сернистое железо кристаллизуется между кристаллами наплавленного металла, что приводит к возникновению горячих трещин. Также в сплаве присутствует фосфор, который, как и сера, является вредной примесью и поэтому его содержание не должно превышать более, чем 0,05 мас. %. Фосфор, соединяясь с железом, образует фосфористое железо, которое обладает высокой хрупкостью и придает стали хладноломкость.

Задачей является усовершенствование состава для аргонодуговой наплавки рабочих органов почвообрабатывающих сельскохозяйственных машин, обеспечивающего повышение эксплуатационных свойств.

Техническим результатом изобретения является повышение физико-механических свойств, а именно твердости, прочности, ударной вязкости и прочности сцепления наплавленного слоя с основным металлом, а также повышение стойкости наплавленного металла к абразивному износу.

Технический результат достигается тем, что состав для наплавки содержит углерод, хром, никель, марганец, кремний, железо, при этом дополнительно содержит вольфрам, ванадий, молибден, медь и азот при следующем соотношении компонентов, мас. %:

углерод 1,0-2,5 хром 14,0-17,0 никель 1,0-2,0 марганец 2,0-4,0 кремний 1,0-2,0 вольфрам 1,0-2,0 ванадий 1,0-2,0 молибден 0,5-1,0 медь 1,0-2,0 азот 0,1-0,3 железо остальное

Упрочнение предложенного наплавочного материала и повышение его физико-механических свойств, происходит за счет образования карбидных фаз хрома, вольфрама, ванадия с сохранением хорошей структурной стабильности наплавленного металла. Количество углерода выбрано из условия, при котором карбидообразующие элементы будут образовывать такое количество карбидов, которое обеспечит максимальную стойкость наплавленного металла к абразивному износу.

Заявленное содержание углерода и хрома в наплавленном металле позволяет придать сплаву структуру доэвтектического хромистого чугуна, состоящую в литом состоянии из зерен первичного аустенита и четверной аустенитокарбидной эвтектики, содержащей хром, вольфрам, ванадий, углерод, распределенной по границам аустенитных зерен. Указанное содержание хрома в сплаве позволяет обеспечить повышение стойкости наплавленного металла к абразивному износу за счет выделения дисперсных частиц карбидов типа (М7С3).

При уменьшении содержания углерода и хрома, структура сплава становится аустенитной, вместо дисперсных выделений частиц карбидов типа (М7С3) появляются крупные включения карбидов (М3С) цементитного типа, что приводит к снижению твердости и стойкости наплавленного слоя к абразивному износу; при увеличении содержания этих элементов сплав приобретает структуру заэвтектического чугуна с крупными выделениями первичных карбидов, что приводит к охрупчиванию наплавленного слоя и резкому снижению стойкости наплавленного металла к абразивному износу.

Введение марганца в состав для наплавки, способствует повышению стойкости наплавленного металла к абразивному износу, за счет образования марганцовистого метастабильного аустенита. Также, по сродству к углероду, марганец занимает промежуточное положение между хромом и железом, принимает участие в карбидообразовании, что способствует повышению ударной вязкости, прочности и стойкости наплавленного слоя к абразивному износу.

Содержание в составе для наплавки никеля в указанном диапазоне обеспечивает образование аустенитной структуры, так как аустенит, легированный никелем, надежно закрепляет карбидную фазу, предохраняя ее от выкрашивания, что приводит к повышению стойкости наплавленного металла к абразивному износу. Отсутствие превращения аустенита в мартенсит за счет содержания никеля в сочетании с марганцем и хромом при охлаждении наплавленного металла способствует сохранению высокой ударной вязкости, прочности и стойкости наплавленного металла абразивному износу.

Дополнительное введение в состав для наплавки меди в указанном диапазоне, способствует переохлаждению аустенита в наплавленном металле, так как соединения меди, хрома, марганца и никеля способствуют образованию аустенитной структуры по сечению наплавленного слоя, включая и зону сплавления, а также обеспечивают увеличение прочности сплавления наплавленного металла предложенного состава с основным металлом и снижают склонность наплавленного металла к абразивному износу и хрупкому разрушению.

Дополнительное введение азота в состав для наплавки в количестве 0,1-0,3 мас. %, способствует образованию нитридов и карбонитридов, и, распределяясь между карбонитридами и твердым раствором, обеспечивает повышение устойчивости последнего против распада, а в сочетании с марганцем и никелем сохранению высоких физико-механических свойств в условиях абразивного износа. При уменьшении содержания азота менее 0,1 мас. %, он почти полностью расходуется на образование упрочняющих фаз. При увеличении содержания азота более 0,3 мас. % образуется большое количество карбонитридов, которые выкрашиваясь в процессе изнашивания, снижают ударную вязкость и прочность наплавленного металла в условиях абразивного износа.

Ванадий являясь карбидо- и нитридообразующим элементом, совместно с углеродом и азотом образует упрочняющие фазы, что способствует повышению стойкости наплавленного металла к абразивному износу. Кроме этого образующиеся карбиды и карбонитриды, выделяясь из жидкого раствора и являясь центрами кристаллизации, способствуют измельчению структуры, что в свою очередь положительно сказывается на ударной вязкости и прочности наплавленного металла. Кроме этого дополнительное введение ванадия в количестве 1,0-2,0 мас. % способствует легированию основы наплавленного металла, повышая ее устойчивость против абразивного износа. Снижение содержания менее 1,0 мас. % ванадия малоэффективно из-за образования недостаточного количества упрочняющих фаз, способствующих повышению сопротивления абразивному износу; введение свыше 2,0 мас. % ванадия нецелесообразно из-за образования большого количества химических соединений ванадия, которые приводят к охрупчиванию наплавленного металла и снижению стойкости к абразивному износу.

Кремний, совместно с марганцем, выполняет задачу флюсующих добавок, то есть окисляясь и всплывая на поверхности, предотвращают выгорание летучих элементов и проникновение окислительных процессов вглубь сварочной ванны. Кроме того, сочетание кремния и азота в указанных диапазонах обеспечивает повышение прочности, ударной вязкости, прочности сцепления наплавленного металла с основным металлом и стойкости наплавленного слоя к абразивному износу за счет образования нитридов кремния (Si3N4). Однако, увеличение содержания кремния более 2,0 мас. % приводит к охрупчиванию наплавленного слоя и образованию горячих трещин.

Введение в состав для наплавки вольфрама в сочетании с углеродом, способствует образованию в наплавленном слое мелкодисперсных карбидов вольфрама (WC), которые равномерно располагаясь в металлической матрице измельчают ее и способствуют увеличению твердости и стойкости наплавленного металла к абразивному износу. Содержание вольфрама в сплаве менее 1,0 мас. % не обеспечивает требуемый эффект упрочнения и повышения абразивной износостойкости; при содержании вольфрама выше 2,0 мас. % образуется выделившаяся фаза из карбидов вольфрама (WC) в большом количестве в зернах, и тем самым ухудшается ударная вязкость наплавленного металла.

Добавление в состав для наплавки молибдена в сочетании с никелем способствует получению мелкокристаллической структуры и повышению стойкости наплавленного металла к абразивному износу. Кроме того, молибден связывает избыточный вольфрам, образуя твердые растворы и препятствуя его выделению в газообразном виде при аргонодуговой наплавке. Также введение молибдена обусловлено необходимостью повышения прочности матрицы наплавленного металла без снижения ее стойкости к абразивному износу. Это проявляется в измельчении зерна аустенита матрицы и образовании сложных карбидов ((MoCr)2С3).

Таким образом, заявляемый состав для наплавки с указанными диапазонами количественных показателей компонентов, характеризуется высокой ударной вязкостью, прочностью, твердостью, прочностью сцепления наплавленного слоя с основным металлом, а также высокой стойкостью наплавленного металла к абразивному износу.

Заявляемый состав для наплавки и сплав известного состава готовили посредством расплавления шихты в индукционной высокочастотной печи с последующей отливкой в прутки диаметром 5 мм и длиной 270 мм, химический состав которых представлен в таблице 1.

Состав в виде литых прутков и сплав известного состава наплавлялись способом аргонодуговой сварки на образцы из стали марки Л53.

Наплавленные образцы подвергались сравнительным испытаниям по следующим показателям:

- ударная вязкость наплавленного металла определялась по ГОСТ 9454-78;

- испытание на прочность, а именно временное сопротивление проводилось по ГОСТ 1497-84;

- твердость по Роквеллу определялась в соответствии с ГОСТ 9013-59 (ИСО 6508-86);

- относительная износостойкость наплавленных образцов определялась на машине СМТ-1 в соответствии с ГОСТ 23.224-86.

Результаты испытаний представлены в таблице 2.

Таким образом, предлагаемый состав для наплавки позволяет повысить физико-механические свойства, а именно твердость, прочность, ударную вязкость и прочность сцепления наплавленного слоя с основным металлом, а также повысить стойкость наплавленного металла к абразивному износу.

Похожие патенты RU2752721C1

название год авторы номер документа
Состав для наплавки 2020
  • Назарько Александр Сергеевич
  • Пломодьяло Роман Леонидович
  • Озолин Александр Витальевич
  • Обозний Вадим Сергеевич
RU2752057C1
ДВУХСЛОЙНЫЙ СТАЛЬНОЙ ЛИСТОВОЙ ПРОКАТ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2013
  • Голованов Александр Васильевич
  • Шеремет Наталия Павловна
  • Мальцев Андрей Борисович
  • Григорьев Александр Николаевич
RU2532755C1
ПОРОШКОВАЯ ПРОВОЛОКА 2011
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
RU2467854C1
Шихта порошковой проволоки 2017
  • Козырев Николай Анатольевич
  • Уманский Александр Александрович
  • Крюков Роман Евгеньевич
  • Думова Любовь Валерьевна
  • Козырева Ольга Анатольевна
  • Непомнящих Александр Сергеевич
  • Федотов Егор Евгеньевич
RU2661126C1
ШИХТА ПОРОШКОВОЙ ПРОВОЛОКИ 2017
  • Гусев Александр Игоревич
  • Козырев Николай Анатольевич
  • Уманский Александр Александрович
  • Думова Любовь Валерьевна
  • Козырева Ольга Анатольевна
RU2665859C1
СОСТАВ ДЛЯ НАПЛАВКИ 1992
  • Ветер В.В.
  • Белкин Г.А.
  • Самойлов М.И.
  • Каретный З.П.
  • Сарычев И.С.
  • Мельников А.В.
RU2014193C1
ПОРОШКОВАЯ ПРОВОЛОКА 2012
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
  • Еремин Андрей Евгеньевич
  • Маталасова Арина Евгеньевна
RU2514754C2
ШТАМПОВЫЙ СПЛАВ 2011
  • Еремин Евгений Николаевич
  • Лосев Александр Сергеевич
RU2479664C1
ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА 2001
  • Гутковский Л.Б.
  • Каморин О.А.
  • Кулбасов А.С.
  • Логинов В.Н.
RU2183688C1
СПЛАВ ДЛЯ ИЗНОСОСТОЙКОЙ НАПЛАВКИ 1999
  • Кулишенко Б.А.
  • Шумяков В.И.
  • Флягин А.А.
  • Балин А.Н.
RU2171165C2

Реферат патента 2021 года Состав для наплавки

Изобретение относится к сварочному производству и может быть использовано для аргонодуговой наплавки рабочих органов почвообрабатывающих сельскохозяйственных машин, работающих в условиях динамических нагрузок и абразивного износа. Состав для наплавки содержит, мас. %: углерод 1,0-2,5, хром 14,0-17,0, никель 1,0-2,0, марганец 2,0-4,0, кремний 1,0-2,0, вольфрам 1,0-2,0, ванадий 1,0-2,0, молибден 0,5-1,0, медь 1,0-2,0, азот 0,1-0,3, железо - остальное. Техническим результатом изобретения является повышение физико-механических свойств, а именно твердости, прочности, ударной вязкости и прочности сцепления наплавленного слоя с основным металлом, а также повышение стойкости наплавленного металла к абразивному износу. 2 табл.

Формула изобретения RU 2 752 721 C1

Состав для наплавки, содержащий углерод, хром, никель, марганец, кремний, железо, отличающийся тем, что дополнительно содержит вольфрам, ванадий, молибден, медь и азот при следующем соотношении компонентов, мас. %:

углерод 1,0-2,5 хром 14,0-17,0 никель 1,0-2,0 марганец 2,0-4,0 кремний 1,0-2,0 вольфрам 1,0-2,0 ванадий 1,0-2,0 молибден 0,5-1,0 медь 1,0-2,0 азот 0,1-0,3 железо остальное

Документы, цитированные в отчете о поиске Патент 2021 года RU2752721C1

Состав для наплавки детали 2018
  • Назарько Александр Сергеевич
  • Пломодьяло Роман Леонидович
  • Демонов Марк Сергеевич
RU2705273C1
Молоток 1928
  • Лисовский В.И.
SU11545A1
Сормайт
Сплав наплавочный прутковый и порошкообразный
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
JP 5606994 B2, 15.10.2014
ИЗНОСОСТОЙКИЙ СПЛАВ 2015
  • Тидестен, Магнус
RU2702517C2
ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА 2001
  • Гутковский Л.Б.
  • Каморин О.А.
  • Кулбасов А.С.
  • Логинов В.Н.
RU2183688C1

RU 2 752 721 C1

Авторы

Назарько Александр Сергеевич

Пломодьяло Роман Леонидович

Озолин Александр Витальевич

Обозний Вадим Сергеевич

Даты

2021-07-30Публикация

2020-10-26Подача