СПОСОБ ПОРАЖЕНИЯ ЦЕЛИ УПРАВЛЯЕМЫМ БОЕПРИПАСОМ В СЛОЖНОЙ ФОНОЦЕЛЕВОЙ ОБСТАНОВКЕ Российский патент 2020 года по МПК F42B12/00 F42B15/01 

Описание патента на изобретение RU2719891C1

Изобретение относится к вооружению, в частности, к системам огневого поражения объектов управляемыми боеприпасами (УБП).

Известен способ поражения объектов ракетой с телевизионной системой наведения (см., например, Юхно П.М. Преднамеренные оптические помехи высокоточному оружию. Монография. - М.: Радиотехника, 2017. стр. 433, 465-468), основанный на определении пространственных координат района местоположения цели, запуске УБП и выводе его в район местоположения цели, съемке с борта УБП участка района местоположения цели, формировании матрицы параметров кадра изображения участка района местоположения цели и передаче ее значения в бортовой вычислитель УБП, обработке значений матрицы параметров кадра изображения участка района местоположения цели и по ее результату выделении параметров цели и корректировке полета УБП на цель.

Основным недостатком способа является возможность срыва наведения УБП на цель, обусловленная ростом вероятности необнаружения и нераспознавания объекта, подлежащего поражению, в сложной фоноцелевой обстановке.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности поражения объектов УБП в сложной фоноцелевой обстановке.

Технический результат достигается тем, что в известном способе поражения цели УБП в сложной фоноцелевой обстановке, основанном на определении пространственных координат района местоположения цели, используют матрицу геоинформационных параметров изображения района местоположения цели и на ее основе формируют бинарную матрицу геоинформационных параметров изображения района местоположения цели с порогом бинаризации, исключающим из анализа изображения района местоположения цели участки, где цель по своим тактико-физическим свойствам находиться не может, вносят значения бинарной матрицы геоинформационных параметров изображения района местоположения цели в бортовой вычислитель УБП, осуществляют запуск УБП и вывод его в район местоположения цели, производят с борта УБП съемку участка района местоположения цели, формируют матрицу параметров кадра изображения участка района местоположения цели для j-го момента времени и передают ее значения в бортовой вычислитель УБП, - номер текущего момента времени, N - количество моментов времени, на борту УБП определяют координаты его местоположения для j-ого момента времени и пространственные параметры съемки участка района местоположения цели для j-го момента времени, передают их значения в бортовой вычислитель УБП и формируют элемент бинарной матрицы геоинформационных параметров кадра изображения участка района местоположения для j-го момента времени, формируют матрицу свертки параметров кадра изображения участка района местоположения цели для j-го момента времени путем перемножения значений матрицы кадра изображения участка района местоположения цели для j-го момента времени и элемента бинарной матрицы геоинформационных параметров кадра изображения участка района местоположения цели для j-го момента времени, осуществляют обработку значений матрицы свертки параметров кадра изображения участка района местоположения цели для j-го момента времени и по ее результату выделяют параметры цели и корректируют полет УБП на цель, повторяют процедуры для j+1-ого момента времени от формирования матрицы параметров кадра изображения участка района местоположения цели до осуществления обработки значений матрицы свертки параметров кадра изображения участка района местоположения цели для j+1-го момента времени и по ее результату выделении параметров цели и корректировки полета УБП на цель.

Сущность изобретения заключается в использовании для наведения УБП изображения района местоположения цели, сформированного с учетом параметров геообстановки района, исключающих из анализа участки изображения, характеризующих невозможность размещения на местности цели по своим тактико-физическим свойствам.

Поражение объектов может осуществляться УБП, использующими различные системы наведения. Одной из них является система самонаведения, по телевизионному (тешювизионному) изображению (см., например, Юхно П.М. Преднамеренные оптические помехи высокоточному оружию. Монография. - М.: Радиотехника, 2017. стр. 433, 465-468). Ключевым элементом успешного функционирования таких систем является выделение цели на изображении из совокупности других объектов. Этот процесс не исключает ошибки, обусловленные наличием объектов схожих по светоконтрастным параметрам с целью. Как правило, по своим тактико-физическим свойствам цель имеет пространственное ограничение размещения на местности, которое отражается в элементах геобстановки. Геоинформация о районе местоположения позволяет исключить из анализа на телевизионном (тепловизионном) изображении участки, на которых местоположение цели маловероятно. Поэтому в интересах снижения вероятности перенацеливания при наведении УБП на ложные цели предлагается использование дополнительного информационного поля, включающего в себя данные геообстановки в области пространства размещения поражаемого объекта.

На фигуре 1 представлены схемы, поясняющие сущность способа, где приняты следующие обозначения: 1 - геоинформационное изображение района ожидаемого местоположения цели; 2 - бинарное геоинформационное изображения района ожидаемого местоположения цели; 3 - бортовой вычислитель УБП; 4 - телевизионная (тепловизионная) головка самонаведения ТВГСН (ТПВГСН) УБП; 5 - блок определения координат местоположения УБП; 7 - цель; 6 - УБП; 8 - участок района местоположения цели, съемку которого осуществляет ТВГСН (ТПВГСН) УБП; 9 - изображение кадра участка района местоположения цели, получаемое ТВГСН (ТПВГСН) УБП; 10 - изображение кадра бинарного геоинформационного изображения участка района местоположения цели; 11 - изображение кадра участка района местоположения цели; получаемое перемножение кадра изображения участка района местоположения цели для и кадра бинарного геоинформационного изображения участка района местоположения цели; 12 - траектория полета УБП; 13 - этап подготовки УБП к применению; 14 - этап наведения УБП на цель; (xjj,zj), βj, εj - координаты местоположения УБП, угол места и азимут ориентации его ТВГСН (ТПВГСН) в j-ый момент времени; ωj - угол поля зрения ТВГСН (ТПВГСН) УБП в j-ый момент времени, где - номер текущего момента времени, N - количество моментов времени.

Предлагаемый способ предусматривает следующий порядок действий. Предварительно на этапе подготовки УБП к применению 13 в бортовой вычислитель 3 УБП 6 вносят координаты положения ожидаемого района местоположения цели 7. Далее, используя матрицу геоинформационных параметров изображения района местоположения цели 1 формируют бинарную матрицу 2 (на фигуре 1 элементы разрешения со значением «1» обобщены черным цветом, а элементы разрешения со значением «0» - белым цветом). При этом порог бинаризации исключает из анализа изображения района местоположения цели участки, где цель по своим тактико-физическим свойствам не может находиться (водоемы, болотная местность, горные образования, оперативно-тактические условия боевого применения цели и т.д.). Вносят значения бинарной матрицы геоинформационных параметров изображения района местоположения цели 2 в бортовой вычислитель 3 УБП 6. Осуществляют запуск УБП 6 и вывод его в район местоположения цели 8. На этапе наведения УБП на цель 14 производят ТВГСН (ТПВГСН) 4 УБП 6 съемку участка района местоположения цели 8 и формируют матрицу параметров кадра его изображения 9 для j-го момента времени. Определяют координаты блоком определения координат местоположение УБП 5 в пространстве (xjj,zj) для j-ого момента времени, а также и пространственные параметры съемки ТВГСН (ТПВГСН) βj, εj, ωj участка района местоположения цели для j-го момента времени. Передают полученные значения пространственных параметров в бортовой вычислитель 3. При этом пространственные параметры (xjj,zj), βj, εj, ωj позволяют выделить и масштабировать элемент (кадр) бинарного геоинформационного изображения района местоположения цели 10 соизмеримого с кадром изображения участка района местоположения цели 9 для j-го момента времени. По полученным данным бортовой вычислитель 3 УБП формирует элемент бинарной матрицы геоинформационных параметров кадра 10 изображения участка района местоположения 2 для j-го момента времени, а также перемножением кадра изображения участка района местоположения цели 9 для j-го момента времени и кадра геоинформационного изображения участка района местоположения цели 10 для j-го момента времени формирует матрицу свертки параметров кадра изображения участка района местоположения цели 11 для j-го момента времени. Параметры полученного изображения 11 обрабатывают (при этом могут использоваться разные алгоритм обработки: однопороговые, двух и более пороговые, по балансу областей и др.), по ее результату выделяют параметры цели 7 и корректируют полет УБП в цель 12. Для кадра изображения участка района местоположения цели, полученного в j+1-ый момент времени, процедуры аналогичны, как для j-го момента времени.

На фигуре 2 изображена блок схема устройства, реализующего способ. Блок - схема включает: 15 ЭВМ, 16 блок датчиков ТВГСН (ТПВГСН), блоки управления полетом УБП 17, остальные блоки соответствуют фигуре 1.

Устройство работает следующим образом. 15 ЭВМ 15, используя программно реализованные модели, растровое изображение геоинформационной карты района местоположения цели преобразует в бинарное изображение, параметры которого передает в бортовой вычислитель 3. Блок датчиков ТВГСН (ТПВГСН) 16 измеряет параметры работы ТВГСН (ТПВГСН) 4 УБП. Блок определения координат местоположения УБП 5 в пространстве определяет координаты местоположение УБП и передает их значение в бортовой вычислитель 3, а также выдает команду блоку датчиков ТВГСН (ТПВГСН) 16 на передачу изображения и параметров его получения в бортовой вычислитель 3. Бортовой вычислитель 3 на основе полученных данных осуществляет необходимые вычислительные операции и по их результату формирует сигналы исполнительным блокам для корректировки полета УБП 17 в цель.

Таким образом, у заявляемого способа появляются свойства повышения эффективности поражения цели УБП в сложной фоноцелевой обстановке за счет исключения из анализа части параметров изображения района местоположения цели, характеризующих невозможность по своим тактико-физическим свойствам размещение цели на местности. Тем самым, предлагаемый авторами способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ поражения цели УБП в сложной фоноцелевой обстановке, основанный на определении пространственных координат района местоположения цели, использовании матрицы геоинформационных параметров изображения района местоположения цели и на ее основе формировании бинарной матрицы геоинформационных параметров изображения района местоположения цели с порогом бинаризации, исключающей из анализа изображения района местоположения цели участки, где цель по своим тактико-физическим свойствам не может находиться, внесении значений бинарной матрицы геоинформационных параметров изображения района местоположения цели в бортовой вычислитель УБП, осуществлении запуска УБП и выводе его в район местоположения цели, произведении с борта УБП съемки участка района местоположения цели, формировании матрицы параметров кадра изображения участка района местоположения цели для j-го момента времени и передачи ее значений в бортовой вычислитель УБП, где - номер текущего момента времени, N - количество моментов времени, на борту УБП определении координат его местоположения для j-ого момента времени и пространственных параметров съемки участка района местоположения цели для j-го момента времени, передачи их значений в бортовой вычислитель УБП и формировании элемента бинарной матрицы параметров кадра геоинформационного изображения участка района местоположения для j-го момента времени, формировании матрицы свертки параметров кадра изображения участка района местоположения цели для j-го момента времени путем перемножения значений матрицы кадра изображения участка района местоположения цели для j-го момента времени и элемента бинарной матрицы параметров кадра геоинформационного изображения участка района местоположения цели для j-го момента времени, осуществлении обработки значений матрицы свертки параметров кадра изображения участка района местоположения цели для j-го момента времени и по ее результату выделении параметров цели и корректировке полета УБП в цель, повторении процедур для j+1-ого момента времени от формирования матрицы параметров кадра изображения участка района местоположения цели до осуществления обработки значений матрицы свертки параметров кадра изображения участка района местоположения цели для j-го момента времени и по ее результату выделении параметров цели и корректировке полета УБП в цель, включительно.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые электротехнические узлы и устройства.

Похожие патенты RU2719891C1

название год авторы номер документа
СПОСОБ ОБНАРУЖЕНИЯ МАЛОРАЗМЕРНЫХ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ 2020
  • Козирацкий Юрий Леонтьевич
  • Донцов Александр Александрович
  • Кулешов Павел Евгеньевич
  • Нагалин Даниил Александрович
  • Ганин Алексей Викторович
  • Калинин Василий Сергеевич
RU2743224C1
Способ определения координат объектов и их распознавания 2022
  • Агеев Павел Александрович
  • Зевин Владислав Владимирович
  • Кудрявцев Александр Михайлович
  • Машнич Александр Сергеевич
  • Облётова Ольга Валерьевна
  • Смирнов Павел Леонидович
  • Удальцов Николай Петрович
RU2787946C1
СПОСОБ ПРОТИВОДЕЙСТВИЯ УПРАВЛЯЕМЫМ БОЕПРИПАСАМ 2015
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Донцов Александр Александрович
  • Прохоров Дмитрий Владимирович
  • Бутузов Владимир Васильевич
RU2593522C1
СПОСОБ ВЫСОКОТОЧНОГО ПОРАЖЕНИЯ РАДИОЭЛЕКТРОННЫХ ОБЪЕКТОВ 2014
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Чернухо Иван Иванович
  • Паршин Анатолий Васильевич
  • Паринов Максим Леонидович
  • Кильдюшевский Владимир Михайлович
RU2598687C2
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ КООРДИНАТ ОБЪЕКТОВ 2014
  • Вишняков Сергей Михайлович
  • Смирнов Павел Леонидович
  • Терентьев Андрей Викторович
  • Фильченко Николай Владимирович
  • Царик Олег Владимирович
  • Шепилов Александр Михайлович
  • Шишков Вячеслав Александрович
RU2550811C1
СПОСОБ ПОВЫШЕНИЯ ПОМЕХОЗАЩИЩЕННОСТИ УПРАВЛЯЕМЫХ БОЕПРИПАСОВ ПО НАВИГАЦИОННЫМ СИГНАЛАМ 2020
  • Кулешов Павел Евгеньевич
  • Разиньков Сергей Николаевич
  • Ганин Алексей Викторович
  • Ильинов Евгений Владимирович
RU2756333C1
Способ защиты вертолета от управляемых боеприпасов 2016
  • Алабовский Александр Андреевич
  • Балаин Станислав Евгеньевич
  • Гревцев Александр Иванович
  • Капитанов Владимир Валерьевич
  • Козирацкий Александр Юрьевич
  • Кулешов Павел Евгеньевич
  • Кущев Сергей Сергеевич
  • Паринов Максим Леонидович
RU2634798C1
Способ поиска оптических и оптико-электронных приборов 2016
  • Козирацкий Юрий Леонтьевич
  • Козирацкий Александр Юрьевич
  • Кулешов Павел Евгеньевич
  • Алабовский Андрей Владимирович
  • Стоякин Владимир Викторович
  • Гостев Филипп Александрович
  • Ганин Алексей Викторович
  • Кох Никита Сергеевич
RU2676856C2
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ КООРДИНАТ ОБЪЕКТОВ 2012
  • Вишняков Сергей Михайлович
  • Давыденко Антон Сергеевич
  • Митянин Александр Геннадьевич
  • Смирнов Павел Леонидович
  • Терентьев Андрей Викторович
  • Царик Олег Владимирович
  • Шепилов Александр Михайлович
  • Шишков Александр Яковлевич
RU2513900C1
Способ наведения управляемого боеприпаса 2016
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Паринов Максим Леонидович
  • Балаин Станислав Евгеньевич
  • Левшин Евгений Анатольевич
  • Донцов Александр Александрович
RU2635299C1

Иллюстрации к изобретению RU 2 719 891 C1

Реферат патента 2020 года СПОСОБ ПОРАЖЕНИЯ ЦЕЛИ УПРАВЛЯЕМЫМ БОЕПРИПАСОМ В СЛОЖНОЙ ФОНОЦЕЛЕВОЙ ОБСТАНОВКЕ

Изобретение относится к вооружению, в частности к системам огневого поражения объектов управляемыми боеприпасами. Сущность способа поражения цели управляемым боеприпасом в сложной фоноцелевой обстановке заключается в определении пространственных координат района местоположения цели, использовании матрицы геоинформационных параметров изображения района местоположения цели и на ее основе формировании бинарной матрицы геоинформационных параметров изображения района местоположения цели с порогом бинаризации, исключающей из анализа изображения района местоположения цели участки, где цель по своим тактико-физическим свойствам находиться не может, внесении значений бинарной матрицы геоинформационных параметров изображения района местоположения цели в бортовой вычислитель управляемого боеприпаса, осуществлении запуска управляемого боеприпаса и выводе его в район местоположения цели, произведении с борта управляемого боеприпаса съемки участка района местоположения цели, формировании матрицы параметров кадра изображения участка района местоположения цели для j-го момента времени и передачи ее значений в бортовой вычислитель управляемого боеприпаса, где - номер текущего момента времени, N - количество моментов времени, на борту управляемого боеприпаса определении координат его местоположения для j-го момента времени и пространственных параметров съемки участка района местоположения цели для j-го момента времени, передачи их значений в бортовой вычислитель управляемого боеприпаса и формировании элемента бинарной матрицы геоинформационных параметров кадра изображения участка района местоположения для j-го момента времени, формировании матрицы свертки параметров кадра изображения участка района местоположения цели для j-го момента времени путем перемножения значений матрицы кадра изображения участка района местоположения цели для j-го момента времени и элемента бинарной матрицы геоинформационных параметров кадра изображения участка района местоположения цели для j-го момента времени, осуществлении обработки значений матрицы свертки параметров кадра изображения участка района местоположения цели для j-го момента времени и по ее результату выделении параметров цели и корректировке полета управляемого боеприпаса в цель, повторении процедур для j+1-го момента времени от формирования матрицы параметров кадра изображения участка района местоположения цели до осуществления обработки значений матрицы свертки параметров кадра изображения участка района местоположения цели для j+1-го момента времени и по ее результату выделении параметров цели и корректировки полета УБП на цель. 2 ил.

Формула изобретения RU 2 719 891 C1

Способ поражения цели управляемым боеприпасом в сложной фоноцелевой обстановке, основанный на определении пространственных координат района местоположения цели, отличающийся тем, что используют матрицу параметров геоинформационного изображения района местоположения цели и на ее основе формируют бинарную матрицу параметров геоинформационного изображения района местоположения цели с порогом бинаризации, исключающим из анализа изображения района местоположения цели участки, где цель по своим физическим свойствам находиться не может, вносят значения бинарной матрицы параметров геоинформационного изображения района местоположения цели в бортовой вычислитель управляемого боеприпаса, осуществляют запуск управляемого боеприпаса и вывод его в район местоположения цели, производят с борта управляемого боеприпаса съемку участка района местоположения цели, формируют матрицу параметров кадра изображения участка района местоположения цели для j-го момента времени и передают ее значения в бортовой вычислитель управляемого боеприпаса, где - номер текущего момента времени, N - количество моментов времени, на борту управляемого боеприпаса определяют координаты его местоположения для j-го момента времени и пространственные параметры съемки участка района местоположения цели для j-го момента времени, передают их значения в бортовой вычислитель управляемого боеприпаса и формируют элемент бинарной матрицы параметров кадра геоинформационного изображения участка района местоположения для j-го момента времени, формируют матрицу свертки параметров кадра изображения участка района местоположения цели для j-го момента времени путем перемножения значений матрицы кадра изображения участка района местоположения цели для j-го момента времени и элемента бинарной матрицы параметров кадра геоинформационного изображения участка района местоположения цели для j-го момента времени, осуществляют обработку значений матрицы свертки параметров кадра изображения участка района местоположения цели для j-го момента времени и по ее результату выделяют параметры цели и корректируют полет управляемого боеприпаса в цель, повторяют процедуры для j+1-го момента времени от формирования матрицы параметров кадра изображения участка района местоположения цели до осуществления обработки значений матрицы свертки параметров кадра изображения участка района местоположения цели для j+1-го момента времени и по ее результату выделяют параметры цели и корректировки полета УБП на цель.

Документы, цитированные в отчете о поиске Патент 2020 года RU2719891C1

ЮХНО П.М
Преднамеренные оптические помехи высокоточному оружию, Москва, Радиотехника, 2017, с
Подвижная хлебопекарная печь 1925
  • Бушкевич В.И.
  • Важеевский П.А.
SU433A1
СПОСОБ СТРЕЛЬБЫ УПРАВЛЯЕМЫМ СНАРЯДОМ С ЛАЗЕРНОЙ ПОЛУАКТИВНОЙ ГОЛОВКОЙ САМОНАВЕДЕНИЯ 2003
  • Шипунов А.Г.
  • Бабичев В.И.
  • Рабинович В.И.
  • Подчуфаров Ю.Б.
  • Серегин Ю.В.
  • Троицкий В.А.
RU2247297C1
СПОСОБ СТРЕЛЬБЫ УПРАВЛЯЕМЫМ СНАРЯДОМ С ЛАЗЕРНОЙ ПОЛУАКТИВНОЙ ГОЛОВКОЙ САМОНАВЕДЕНИЯ 2005
  • Бабичев Виктор Ильич
  • Рабинович Владимир Исаакович
  • Подчуфаров Юрий Борисович
  • Ларин Андрей Викторович
  • Ларин Дмитрий Викторович
  • Шамин Михаил Степанович
RU2300726C1
СПОСОБ И УСТРОЙСТВО ДЛЯ НАВОДКИ ОРУДИЯ 1995
  • Шипунов А.Г.
  • Березин С.М.
  • Подчуфаров Ю.Б.
  • Романов Ю.С.
  • Папазьян А.А.
RU2111437C1
УПРАВЛЯЕМЫЙ СНАРЯД 1998
  • Шипунов А.Г.
  • Захаров Л.Г.
  • Зыбин И.М.
  • Филимонов Г.Д.
RU2125230C1
СИСТЕМА НАВЕДЕНИЯ УПРАВЛЯЕМОГО БОЕПРИПАСА ПО ОТРАЖЕННОМУ ОТ ОБЪЕКТА ПОРАЖЕНИЯ ЛАЗЕРНОМУ ИЗЛУЧЕНИЮ 2005
  • Алчинов Виктор Иванович
  • Пархоменко Василий Александрович
  • Устинов Евгений Михайлович
RU2293942C2
US 3598344 A, 10.08.1971.

RU 2 719 891 C1

Авторы

Козирацкий Юрий Леонтьевич

Гревцев Александр Иванович

Донцов Александр Александрович

Паринов Максим Леонидович

Кулешов Павел Евгеньевич

Балаин Станислав Евгеньевич

Капитанов Владимир Валерьевич

Козирацкий Антон Александрович

Даты

2020-04-23Публикация

2019-07-09Подача