ПРОВОЛОКА СВАРОЧНАЯ ИЗ ТИТАНОВЫХ СПЛАВОВ Российский патент 2020 года по МПК B23K35/32 C22C14/00 

Описание патента на изобретение RU2721977C1

Изобретение относится к области металлургии сплавов на основе титана, в частности к сплавам для сварочных материалов, и может быть использовано в качестве присадочной проволоки для дуговой сварки в среде инертных газов высокопрочных (α+β)- и псевдо-β-титановых сплавов, предназначенных для использования в качестве конструкционного высокопрочного высокотехнологичного материала для изготовления конструкций судостроительной, авиационной и космической техники, а также энергетических установок.

Для сварки высокопрочных (α+β)- и псевдо-β-титановых сплавов наиболее оптимальным является применение присадочных материалов, относящихся к классу псевдо-α и низколегированных (α+β)-титановых сплавов.

Известна сварочная проволока марки СП15 по ГОСТ 27265, следующего химического состава, мас. %: алюминий 3,0-5,5; молибден 2,0-3,5; ванадий 2,0-3,5; цирконий 1,0-2,0; кремний ≤0,15; железо ≤0,30; углерод ≤0,10; кислород ≤0,15; азот ≤0,05; водород ≤0,006; сумма прочих примесей ≤0,30; титан - остальное.

Недостатком известной присадочной проволоки для сварки титановых сплавов, например, сплава ВТ22, является снижение прочностных характеристик полученных сварных соединений по сравнению с основным металлом [С.М. Гуревич, В.Н. Замков, Н.А. Кушниренко Сварка и термическая обработка титанового сплава ВТ22 // Автоматическая сварка, 1982, №5].

Известны сварочные проволоки марок ВТ20-1св по ГОСТ 27265, ВТ20-2св по ГОСТ 27265 и ВТ20-3св следующего химического состава, мас. %:

- ВТ20-1св по ГОСТ 27265 (алюминий 2,0-3,0; молибден 0,5-1,5; ванадий 0,5-1,5; цирконий 1,0-2,0; кремний ≤0,10; железо ≤0,15; углерод ≤0,05; кислород ≤0,12; азот ≤0,04; водород ≤0,003; сумма прочих примесей ≤0,30; титан - остальное);

- ВТ20-2св по ГОСТ 27265 (алюминий 3,5-4,5; молибден 0,5-1,5; ванадий 0,5-1,5; цирконий 1,0-2,0; кремний ≤0,10; железо ≤0,15; углерод ≤0,05; кислород ≤0,12; азот ≤0,04; водород ≤0,003; сумма прочих примесей ≤0,30; титан - остальное);

- ВТ20-3св (патент SU 436717) (алюминий 4,7-5,8; цирконий 2,2 - 3,5; молибден 0,8-1,5; ванадий 1,3-3,2; олово 1-2%; водород ≤0,003; кислород ≤0,120; титан - остальное).

Использование сварочной проволоки марки ВТ20-2св для изготовления сварных соединений титановых сплавов, например, сплава марки ВТ20, приводит к уменьшению временного сопротивления металла шва при увеличении толщины свариваемого металла. [Р.С. Курочко, Н.Н. Мануйлов, Л.А. Груздева, Е.А. Борисова Присадочная проволока для сварки высокопрочных титановых сплавов // Сварочное производство, 1977, №3].

Применение проволоки марки ВТ20-3св для аргонодуговой сварки титановых сплавов, например, сплава ВТ22, приводит к снижению ударной вязкости металла шва [М.А. Хорев, В.И. Лукин, А.В. Иода, Е.С. Силкина и др. Присадочные материалы для сварки конструкционных титановых сплавов // Технология легких сплавов, 1990, №5].

Известны сварочные проволоки марок ВТ6св и СПТ-2 по ГОСТ 27265 следующих химических составов, мас. %:

- ВТ6св (алюминий 3,5-4,5; ванадий 2,5-3,5; кремний ≤0,10; железо ≤0,15; углерод ≤0,05; кислород ≤0,12; азот ≤0,04; водород ≤0,003; сумма прочих примесей ≤0,30; титан - остальное);

- СПТ-2 (алюминий 3,5-4,5; ванадий 2,5-3,5; цирконий 1,0-2,0; кремний ≤0,10; железо ≤0,15; углерод ≤0,05; кислород ≤0,12; азот ≤0,04; водород ≤0,003; сумма прочих примесей ≤0,30; титан - остальное).

Недостатком вышеперечисленных сварочных проволок при использовании их в качестве присадочного материала в процессе аргонодуговой сварки титановых сплавов, например, сплава ВТ22, является недостаточный уровень прочностных характеристик полученных сварных соединений [С.М. Гуревич, В.Н. Замков, Н.А. Кушниренко Сварка и термическая обработка титанового сплава ВТ22 // Автоматическая сварка, 1982, №5].

Наиболее близким аналогом, взятым за прототип, является сварочная проволока на основе титана СПТ-2 (ГОСТ 27265), имеющая самую высокую прочность из вышеперечисленных и содержащая, масс. %: алюминий 3,5-4,5; ванадий 2,5-3,5; цирконий 1,0-2,0; кремний ≤0,10; железо ≤0,15; углерод ≤0,05; кислород ≤0,12; азот ≤0,04; водород ≤0,003; сумма прочих примесей ≤0,30; титан - остальное.

Техническим результатом предложенного изобретения является создание сварочной проволоки для дуговой сварки неплавящимся электродом в среде инертных газов высокопрочных титановых (α+β)- и псевдо-β-сплавов, обеспечивающей повышение характеристик прочности металла шва (до 973 МПа) при сохранении характеристик пластичности.

Технический результат достигается в результате того, что сварочная проволока на основе титана включает алюминий, ванадий, молибден, цирконий, хром, остальное примеси при следующем соотношении компонентов, мас. %: алюминий 3,5-4,5; ванадий 1,5-2,5; молибден 1,5-2,5; цирконий 1,0-2,0; хром 0,5-0,7; углерод не более 0,05; кислород не более 0,12; азот не более 0,03; водород не более 0,003; титан - остальное.

Предложенная сварочная проволока относится к классу низколегированных (α+β)-титановых сплавов с молибденовым эквивалентом (Моэкв) на уровне 4,42% - среднее значение (от 3,4 до 5,44%). Сплав комплексно легирован изоморфными (ванадий, молибден) и эвтектоидными (хром) β-стабилизаторами, α-стабилизаторами (алюминий) и нейтральным упрочнителем (цирконий).

Для сварочной проволоки из сплава-прототипа (СПТ-2), изготавливаемой по ГОСТ 27265, молибденовый эквивалент составляет 1,8-2,5%.

Повышение значений молибденового эквивалента связано с дополнительным легированием предложенной сварочной проволоки β-стабилизаторами (молибден, хром), что приводит к положительным эффектам комплексного легирования (например, при сварке нового псевдо-β-титанового сплава ПТ-48 повышаются химическая и структурная однородность и механические свойства различных зон сварного соединения, а также увеличивается предел прочности без снижения пластичности сварного шва).

Хром является эффективным упрочнителем в титановых сплавах. Содержание в сварочной проволоке хрома от 0,5 до 0,7% выбрано по причине уменьшения ликвации легирующего элемента в процессе изготовления слитка и внутри зерна, что способствует термической стабильности титановой сварочной проволоки. Помимо этого, содержание хрома ограничено в виду дополнительного легирования сплава β-стабилизаторами (хром и молибден), с целью повышения уровня механических свойств проволоки и сварных соединений.

Совместное легирование хромом и молибденом обеспечивает постоянство суммарного количества β-стабилизаторов (центральные участки дендритов обогащены молибденом, а участки прилегающие к границам - хромом) в различных зонах сварного соединения, тем самым повышая прочностные и пластические характеристики [Попова М.А., Россина Н.Г, Попов Н.А. Процессы выделения α2-фазы в сплавах титан-алюминий. Титан, 2016, №4]. Помимо этого одновременное легирование несколькими β-стабилизирующими элементами позволяет получить более равномерный и дисперсный распад фазовых составляющих различных зон сварного соединения. Молибден в количестве до 2,5% повышает прочностные характеристики сварного соединения. При дальнейшем увеличении содержания молибдена происходит снижение пластичности, что связано с образованием большого количества пересыщенной α'-фазы в процессе термического цикла сварки.

Алюминий повышает предел прочности сварного соединения, но при введении в сплав больше 5% происходит заметное снижение пластичности и технологичности изготовления в процессе волочения проволок. С повышением содержания в сплаве алюминия увеличивается допустимое количество молибдена, что обусловлено его повышенной растворимостью в α-титане.

Ванадий умеренно упрочняет титан при незначительном снижении его пластичности, что объясняется увеличением содержания более прочной β-фазы в α-матрице. Содержание ванадия относительно сплава-прототипа понижено до 1,5-2,5%, ввиду дополнительного легирования сплава β-стабилизаторами (молибден, хром).

Легирование сплава и сварного шва цирконием 1,0-2,0% при сварке высокопрочного псевдо-β-титанового сплава повышает равномерность распада метастабильной β-фазы при старении, уменьшает отрицательное влияние сегрегаций легирующих элементов на структуру высоколегированных β-сплавов в зоне сплавления, способствуя более равномерному участию элементов в пластической деформации при нагружении. Цирконий повышает термическую стабильность, коррозионную стойкость сплавов Ti-Mo, увеличивает прокаливаемость, подавляет образование ω-фазы при низких температурах старения и уменьшает окисление.

Кислород стабилизирует α-фазу, хорошо растворяясь в α-титане, существенно упрочняет титан. Каждые 0,1% кислорода (по массе) повышают прочностные свойства титана на 130 МПа, что связано с сильным искажением решетки α-титана из-за внедрения атомов кислорода в октаэдрические пустоты. Однако при сварке возможно дополнительное окисление металла шва при нарушении защиты зоны сварки, поэтому в сварочной проволоке интервал содержания кислорода ограничен до 0,12%.

В области малых концентраций углерод повышает пределы прочности и текучести титана; при концентрациях углерода более 0,2% образуются твердые карбиды, снижающие ударную вязкость и затрудняющие механическую обработку. В связи с этим содержание углерода в предлагаемом сплаве ограничено интервалом до 0,05%.

Азот - вредная примесь в титановых сплавах, существенно снижающая пластичность, и поэтому его содержание в предлагаемом сплаве регламентируется в пределе до 0,03%.

Водород образует раствор типа внедрения и также относится к категории вредных примесей, так как вызывает водородную хрупкость титановых сплавов. В предлагаемом сплаве содержание водорода ограничено интервалом до 0,003%.

Пример выполнения:

Из предлагаемого титанового сплава изготавливали слитки размером ∅ 360×310 мм методом двойного вакуумно-дугового переплава. Далее проводился нагрев слитков до температур 950°С-1180°С и последующий прокат до диаметра 50 мм. Отпрессованную заготовку разрезали на части, проводили механическую обработку для удаления поверхностных дефектов. После чего заготовки нагревали до температур 880°С-980°С и осуществляли прокат до диаметра 8 мм.

Полученные проволочные заготовки (катанки) проходили многократное волочение до диаметров 2 и 4 мм. После этого было произведено травление сварочной проволоки. Окончательная операция процесса изготовления - вакуумный отжиг для дегазации конечного продукта.

В качестве основного металла для исследования свойств сварных соединений был выбран псевдо-β-титановый сплав марки ПТ-48 (патент RU 2690257 С1) в виде плиты размером 100×100×600 мм. Из плиты механическим способом вырезали пластины толщиной 20 мм для изготовления сварных соединений. Сварку плит выполняли в виде стыковых соединений ручной аргонодуговой сваркой с присадочным материалом (таблица 1).

Далее были определены следующие характеристики полученных полуфабрикатов (проволоки) и сварных соединений:

- механические характеристики при испытаниях проволоки на статическое растяжение при комнатной температуре по ГОСТ 27265 (временное сопротивление и относительное удлинение);

- механические характеристики при испытаниях образцов, вырезанных из металла шва сварных соединений, на статическое растяжение по ГОСТ 6996.

В таблице 2 приведены стандартные механические свойства проволоки, изготовленной из предлагаемого сплава и сплава-прототипа. Механические свойства предлагаемой сварочной проволоки выше, чем проволоки из сплава-прототипа.

В таблице 3 представлены прочностных характеристики металла шва сварных соединений, полученных ручной аргонодуговой сваркой с применением в качестве присадочного материала проволоки-прототипа (СПТ-2) и предлагаемой сварочной проволоки.

Из таблицы 3 следует, что при использовании предлагаемой сварочной проволоки в качестве присадочного материала в процессе аргонодуговой сварки титанового псевдо-β-сплава по сравнению с проволокой-прототипом (СПТ-2), значение временного сопротивления металла шва повысилось на 250 МПа, значение предела текучести на 222 МПа при сохранении характеристик пластичности на уровне сплава-прототипа.

Полученные результаты по увеличению прочности металла шва сварных соединений позволяют уменьшить высоту усиления шва, в результате чего повышается технико-экономический эффект при изготовлении конструкций, а именно повышается производительность процесса и уменьшается расход присадочного материала.

При этом комплексное легирование сварочной проволоки тремя (β-стабилизирующими элементами (Mo, Cr, V) позволяет получить однородную структуру во всех зонах сварного соединения.

Предлагаемая сварочная проволока может использоваться в качестве присадочного материала для дуговой сварки в среде инертных газов высокопрочных титановых (α+β)- и псевдо-β-сплавов в среде инертных газов. Металл шва сварных соединений, полученных с применением предлагаемой сварочной проволоки, обладает более высокими значениями временного сопротивления (973 МПа) при сохранении характеристик пластичности по сравнению с металлом шва сварных соединений, изготовленных с применением ранее известных присадочных материалов.

Похожие патенты RU2721977C1

название год авторы номер документа
ПРОВОЛОКА СВАРОЧНАЯ ИЗ ТИТАНОВЫХ СПЛАВОВ 2019
  • Орыщенко Алексей Сергеевич
  • Леонов Валерий Петрович
  • Михайлов Владимир Иванович
  • Сахаров Игорь Юрьевич
  • Грошев Андрей Леонидович
  • Кузнецов Сергей Васильевич
  • Баранова Светлана Борисовна
RU2721976C1
СПЛАВ НА ОСНОВЕ ТИТАНА 2018
  • Ковальчук Михаил Валентинович
  • Орыщенко Алексей Сергеевич
  • Леонов Валерий Петрович
  • Кудрявцев Анатолий Сергеевич
  • Чудаков Евгений Васильевич
  • Кулик Вера Петровна
  • Третьякова Наталья Валерьевна
  • Ледер Михаил Оттович
RU2690257C1
Высокопрочный титановый сплав для корпусных конструкций атомного реактора с водяным теплоносителем 2019
  • Ковальчук Михаил Валентинович
  • Орыщенко Алексей Сергеевич
  • Леонов Валерий Петрович
  • Ледер Михаил Оттович
  • Счастливая Ирина Алексеевна
  • Ханжин Александр Валерьевич
  • Иголкина Татьяна Николаевна
  • Скрупскас Виталий Викторович
RU2702251C1
СПЛАВ НА ОСНОВЕ ТИТАНА 1994
  • Моисеев В.Н.
  • Хорев А.И.
RU2082802C1
СВАРИВАЕМЫЙ ТИТАНОВЫЙ СПЛАВ С L-СТРУКТУРОЙ 1994
  • Ясинский К.К.
  • Хорев А.И.
RU2082804C1
Состав сварочной проволоки 1980
  • Лазько Виктор Евгеньевич
  • Борисов Михаил Тимофеевич
  • Жмурина Юзефа Александровна
  • Гринин Владимир Васильевич
  • Курочко Руслан Сергеевич
  • Барихин Алексей Семенович
  • Голиков Евгений Сергеевич
  • Бонами Марк Альбертович
  • Мамыкин Михаил Иванович
  • Васючков Геннадий Николаевич
SU846185A1
СПОСОБ ЭЛЕКТРОННО-ЛУЧЕВОЙ СВАРКИ ВЫСОКОПРОЧНЫХ ТИТАНОВЫХ СПЛАВОВ ДЛЯ ИЗГОТОВЛЕНИЯ КРУПНОГАБАРИТНЫХ КОНСТРУКЦИЙ 2020
  • Орыщенко Алексей Сергеевич
  • Леонов Валерий Петрович
  • Михайлов Владимир Иванович
  • Сахаров Игорь Юрьевич
  • Кузнецов Сергей Васильевич
  • Баранова Светлана Борисовна
  • Попов Алексей Сергеевич
  • Нурутдинова Элина Геннадьевна
RU2750229C1
Сварочная проволока 1973
  • Борисова Елена Андреевна
  • Курочко Руслан Сергеевич
  • Груздева Лариса Алексеевна
  • Пескова Лидия Васильевна
  • Мануйлов Николай Николаевич
SU436717A1
Состав сварочной проволоки 1976
  • Куликов Феликс Романович
  • Кириллов Юрий Георгиевич
  • Васькин Юрий Викторович
  • Матвеенко Артур Федорович
  • Моисеев Валентин Николаевич
  • Полькин Игорь Степанович
  • Морозникова Светлана Вениаминовна
SU560721A1
МЕТАЛЛ СВАРНОГО ШВА, ИМЕЮЩИЙ ПРЕВОСХОДНУЮ СТОЙКОСТЬ К ВОДОРОДНОМУ ОХРУПЧИВАНИЮ 2013
  • Нако, Хиденори
  • Коти, Такуя
  • Урусихара, Ватару
  • Сато, Муненобу
  • Китагава, Йосихико
RU2577666C1

Реферат патента 2020 года ПРОВОЛОКА СВАРОЧНАЯ ИЗ ТИТАНОВЫХ СПЛАВОВ

Изобретение может быть использовано в производстве присадочных материалов для дуговой сварки в среде инертных газов высокопрочных (α+β) и псевдо-β-титановых сплавов, предназначенных для использования в качестве конструкционного высокопрочного высокотехнологичного материала для изготовления конструкций судостроительной, авиационной и космической техники, а также энергетических установок. Сварочная проволока содержит алюминий, ванадий, молибден, цирконий, хром и титан, а также ограниченное содержание примесей при следующем соотношении компонентов, мас.%: алюминий 3,5-4,5; ванадий 1,5-2,5; молибден 1,5-2,5; цирконий 1,0-2,0; хром 0,5-0,7; углерод не более 0,05; кислород не более 0,12; азот не более 0,03; водород не более 0,003; титан - остальное. Техническим результатом изобретения является повышение характеристик прочности металла шва (до 973 МПа) при сохранении характеристик пластичности. 3 табл.

Формула изобретения RU 2 721 977 C1

Проволока сварочная на основе титана, содержащая алюминий, ванадий, цирконий, титан и примеси, отличающаяся тем, что она дополнительно содержит хром и молибден, при этом ограничено содержание углерода, кислорода, азота и водорода в качестве примесей при следующем соотношении компонентов, мас.%:

Алюминий 3,5-4,5 Ванадий 1,5-2,5 Молибден 1,5-2,5 Цирконий 1,0-2,0 Хром 0,5-0,7 Углерод не более 0,05 Кислород не более 0,12 Азот не более 0,03 Водород не более 0,003 Титан остальное

Документы, цитированные в отчете о поиске Патент 2020 года RU2721977C1

Состав сварочной проволоки 1976
  • Гуревич С.М.
  • Аношкин Н.Ф.
  • Топольский В.Ф.
  • Полькин И.С.
  • Кушниренко Н.А.
  • Морозникова С.В.
  • Замков В.Н.
SU653844A1
Состав сварочной проволоки 1976
  • Куликов Феликс Романович
  • Кириллов Юрий Георгиевич
  • Васькин Юрий Викторович
  • Матвеенко Артур Федорович
  • Моисеев Валентин Николаевич
  • Полькин Игорь Степанович
  • Морозникова Светлана Вениаминовна
SU560721A1
ЭЛЕКТРОДНАЯ ПРОВОЛОКА ДЛЯ СВАРКИ ТИТАНОВЫХСПЛАВОВ 0
SU188278A1
СПЛАВ НА ОСНОВЕ ТИТАНА И ПРУТКОВАЯ ЗАГОТОВКА ИЗ СПЛАВА НА ОСНОВЕ ТИТАНА 2017
  • Бекмансуров Рустам Фанильевич
  • Ившин Антон Владимирович
  • Негодин Дмитрий Алексеевич
  • Поздеев Сергей Анатольевич
  • Скворцова Светлана Владимировна
  • Токарев Константин Александрович
  • Хлобыстов Дмитрий Олегович
  • Ярославцев Алексей Анатольевич
RU2690768C1
CN 107486650 A, 19.12.2017.

RU 2 721 977 C1

Авторы

Орыщенко Алексей Сергеевич

Леонов Валерий Петрович

Михайлов Владимир Иванович

Сахаров Игорь Юрьевич

Кузнецов Сергей Васильевич

Баранова Светлана Борисовна

Попов Алексей Сергеевич

Нурутдинова Элина Геннадьевна

Даты

2020-05-25Публикация

2019-12-17Подача