СПОСОБ ИЗМЕЛЬЧЕНИЯ ЦИНКСОДЕРЖАЩЕЙ РУДЫ Российский патент 2020 года по МПК B02C23/06 

Описание патента на изобретение RU2731977C1

Изобретение относится к гидрометаллургии цветных металлов и горнорудной промышленности, может быть использовано при измельчении минерального сырья перед обогащением и гидрометаллургическими процессами, в частности при измельчении сульфидной цинковой руды. Способ заключается в измельчении исходного сырья в мельнице с подачей в нее поверхностно-активных веществ. В качестве поверхностно-активных веществ используют реагенты с гидрофильно-олеофильным соотношением (ГОС) выше 1. Технический результат заключается в повышении эффективности измельчения, а также последующих процессов обогащения и гидрометаллургической обработки, достигаемое за счет увеличения удельной поверхности минерального сырья, вскрытия зерен минералов.

Изобретение относится к горнорудной промышленности, а именно к измельчению минерального и техногенного сульфидного сырья, и может быть использовано при подготовке полезных ископаемых для обогащения или гидрометаллургической переработки, в частности, при подготовке руды, концентрата или другого сырья для выщелачивания цветных металлов.

Широкое применение сверхтонкого измельчения (до крупности -20 мкм и менее) перед обогатительными и гидрометаллургическими процессами обусловлено необходимостью вскрытия ценных минералов из руд, характеризующихся тесной ассоциацией тонкодисперсных ценных минералов с плотной вмещающей породой. С целью повышения эффективности процессов дезинтеграции используют многостадиальные схемы измельчения в шаровых мельницах, применяют также планетарные, струйные, бисерные мельницы. Однако мельницы сверхтонкого измельчения малопроизводительны и их работа характеризуется высокими энергозатратами [Гидрометаллургия. Ч.I. Рудоподготовка и выщелачивание / С.Б. Леонов, Г.Г. Минеев, И.А. Жучков. Иркутск: Изд-во ИРГТУ, 1998.].

Одним из перспективных направлений совершенствования процессов диспергирования является измельчение в присутствии поверхностно-активных веществ (ПАВ). Введение ПАВ в измельчающую среду способствуют снижению прочности твердых тел, за счет чего интенсифицируется дезинтеграция, снижаются удельные затраты энергии и увеличивается производительность мельниц. Механизм явления адсорбционного понижения прочности (эффект Ребиндера) заключается в снижении поверхностной энергии и энергии образования микротрещин, из которых развиваются трещины разрушения. ПАВ препятствуют слипанию трещин, распределяясь по их поверхности [Юсупов Т.С., Кириллова Е.А. О технологических возможностях поверхностно-активных веществ при тонком измельчении руд // Физико-технические проблемы разработки полезных ископаемых. № 5. 2010.].

Известны способы измельчения минерального сырья, заключающиеся в предварительной обработке руды в водном растворе ПАВ с дополнительным воздействием на нее импульсными электрическими разрядами [Авторское свидетельство SU 1618445, приор. 27.01.1989, опубл. 07.01.1991, МПК5 В02С 19/18, В02С 23/06] и ультразвуком [Патент RU 2641527 на изобретение; приор. 20.03.2017; опубл. 18.01.2018. МПК В02С 19/18 (2006.01)]. Существенным недостатком способа [Авторское свидетельство SU 1618445, приор. 27.01.1989, опубл. 07.01.1991, МПК5 В02С 19/18, В02С 23/06] является применение неионогенного ПАВ ОП-10, который не в полной мере реализует эффект Ребиндера. Кроме того, высоковольтные импульсы негативно воздействуют на ПАВ, приводят к его окислению и перерасходу. Использование ультразвуковых источников требует ограничения неблагоприятного влияния ультразвука на персонал.

Наиболее близким к предлагаемому является способ измельчения минерального сырья в водных растворах, содержащих ПАВ, отличающийся тем, что в качестве ПАВ используют фторированные одноатомные спирты предельного ряда с общей формулой H-(CF2CF2)n-CH2-OH, где n=1-5 [Патент RU 2347620 на изобретение, приор. 29.10.2007; опубл. 27.02.2009. МПК В02С 23/06 (2006.01)]. ПАВ подобного типа характеризуются химической устойчивостью, селективностью, молекулы фторированных спиртов имеют меньшие размеры, что позволяет им легко проникать в поры и трещины. Однако наличие фторсодержащих ПАВ недопустимо во многих гидрометаллургических процессах, в частности введение фтора на стадии рудоподготовки цинкового сырья крайне негативно влияет на последующие технологические операции. При электроэкстракции цинка из технологических растворов малейшие содержания фтора резко осложняют сдирку катодного осадка. Фторсодержащие ПАВ являются токсичными реагентами. Кроме того, стоимость фторсодержащих ПАВ в несколько раз выше стоимости углеродных ПАВ.

Технической проблемой, на решение которой направлен предлагаемый способ, является низкая эффективность измельчения, в частности, высокий удельный расход энергии на измельчение, негативное влияние ПАВ на последующие операции переработки сырья. Технический результат заключается снижении удельного расхода энергии при измельчении, повышении эффективности раскрытия минералов и снижении негативного влияния ПАВ на последующие стадии технологии за счет использования оригинального ПАВ и оптимизации его расхода.

Технический результат достигается в способе измельчения минерального сырья в присутствии ПАВ. В отличие от прототипа измельчение минерального сырья проводят с добавлением в измельчающую среду водного раствор дезинтегратора с гидрофильно-олеофильным соотношением (ГОС) выше 1, при этом концентрация ПАВ в водном растворе составляет 0,1-0,3%.

В соответствии с теорией физической и коллоидной химии, гидрофильно-олеофильное соотношение определяется, как отношение энергий мицеллообразования в углеводородной и водной фазах и представляет собой баланс сольвофильных и сольвофобных взаимодействий ПАВ с резко различающимися друг от друга по полярности и сольватирующей способности растворителями [Физико-химические основы процессов микрофлотации / В.В. Свиридов, А.В. Свиридов, А.Ф. Никифоров. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006.]. Таким образом, с помощью величины ГОС можно оценить гидрофильные и гидрофобные свойства поверхностно-активных веществ. Значение ГОС>1 свидетельствует о преобладании гидрофильных групп в составе реагента, что приводит к повышению смачиваемости минералов водными растворами, усиления эффекта диффузии жидкой фазы в микродефекты кристаллической структуры минеральных зерен и, в итоге, понижения прочности частиц (эффект Ребиндера).

Способность ПАВ увеличивать смачиваемость твердой поверхности водными растворами может свидетельствовать об их высокой эффективности при дезинтеграции минерального сырья. Исследованиями показателей смачиваемости установлено, что наиболее эффективное снижение краевых углов смачивания поверхности образцов сульфида цинка достигается при использовании водных растворов додецилбензолсульфоната натрия (ДДБСН). Важнейшими отличиями данного регента от рекомендованного в прототипе является отсутствие в его составе фтора и показатель гидрофильно-олеофильного соотношения. В способе прототипа ГОС рекомендуемого ПАВ меньше 1. Рекомендуемый в настоящем способе ПАВ характеризуется гидрофильно-олеофильным соотношением больше 1. Опытами показано, что оптимальное значение концентрации рекомендованного ПАВ в жидкой фазе соответствует 0,1-0,3%. При меньших концентрациях эффективность ПАВ резко снижается, а концентрация больше 0,3% положительного эффекта не оказывает. Более того, при очевидном избытке ПАВ измельчение протекает хуже.

Наиболее корректным методом оценки эффективности использования ПАВ при измельчении является выход тонких классов в получаемом продукте при идентичности прочих равных параметров процесса: плотность пульпы Ж: Т, продолжительность, температура и пр.

Примером реализации предлагаемого способа служат результаты следующих опытов.

Навески цинковой сульфидной руды массой 200 г исходной крупностью – 15 мм измельчали в одной и той же лабораторной мельнице в присутствии воды при Ж:Т=1:1, комнатной температуре, в течение 30 минут. По окончании опыта пульпу фильтровали, руду сушили и рассевом определяли выход класса - 0,1 мм. В качестве ПАВ использовали два дезинтегрирующего реагента: 1% раствор додецилбензолсульфоната натрия с гидрофильно-олеофильным соотношением равным 1,3 и дидецилдиметиламмоний хлорид (ДДАХ) ГОС которого равняется 1,0. В опытах варьировали концентрацией ПАВ в жидкой фазе. Для сравнения приведен результат опыта, проведенного по способу прототипа. В этом случае использовали фторированный спирт H-(CF2CF2)n-CH2-OH с n=2.

Результаты (см. фигуру) показывают, что при использовании ПАВ, характеризующихся значением ГОС>1 с рекомендованными концентрациями, в воде выход тонкого класса в измельченной при одинаковых условиях руде для предлагаемого способа в 1,5-2 раза выше, чем достигается при использовании прототипа.

Сопоставительный анализ известных технических решений, в т.ч. способа, выбранного в качестве прототипа, и предлагаемого изобретения позволяет сделать вывод, что именно совокупность заявленных признаков обеспечивает достижение усматриваемого технического результата. Реализация предложенного технического решения дает возможность при измельчении минерального сырья повысить эффективность измельчения в 1,5-2 раза.

Похожие патенты RU2731977C1

название год авторы номер документа
СПОСОБ ИЗМЕЛЬЧЕНИЯ МИНЕРАЛЬНОГО СЫРЬЯ 2017
  • Лобанов Владимир Геннадьевич
  • Замотин Павел Алексеевич
  • Абдрахманов Ильяс Сагынбекович
  • Павченко Алексей Сергеевич
  • Колмачихина Ольга Борисовна
  • Опошнян Владимир Ильич
RU2641527C1
СПОСОБ ИЗМЕЛЬЧЕНИЯ МИНЕРАЛЬНОГО СЫРЬЯ 2007
  • Кондратьев Сергей Александрович
  • Каргаполов Юрий Сергеевич
  • Фоменко Владислав Викторович
  • Ростовцев Виктор Иванович
RU2347620C1
СПОСОБ ГИДРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ КОНЦЕНТРАТОВ 2007
  • Крылова Любовь Николаевна
  • Медведев Александр Сергеевич
  • Панин Виктор Васильевич
  • Рябцев Дмитрий Александрович
RU2339706C1
СПОСОБ ВЫЩЕЛАЧИВАНИЯ ПРОДУКТОВ, СОДЕРЖАЩИХ СУЛЬФИДЫ МЕТАЛЛОВ 2007
  • Панин Виктор Васильевич
  • Крылова Любовь Николаевна
  • Селиверстов Александр Федорович
RU2339708C1
СПОСОБ КОЛЛЕКТИВНОЙ ФЛОТАЦИИ СУЛЬФИДОВ, СОДЕРЖАЩИХ БЛАГОРОДНЫЕ МЕТАЛЛЫ, ИЗ ПОЛИМЕТАЛЛИЧЕСКИХ ЖЕЛЕЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ 1995
  • Телешман И.И.
  • Манцевич М.И.
  • Нафталь М.Н.
  • Марков Ю.Ф.
  • Меджибовский А.С.
  • Волков В.И.
  • Железова Т.М.
  • Розенберг Ж.И.
  • Николаев Ю.М.
  • Линдт В.А.
  • Сухобаевский Ю.Я.
  • Ширшов Ю.А.
  • Кунаева И.В.
  • Вашкеев В.М.
  • Обеднин А.К.
  • Маркичев В.Г.
  • Митюков В.В.
RU2100095C1
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ КОНЦЕНТРАТОВ С ВЫСОКИМ СОДЕРЖАНИЕМ ПИРРОТИНА 2002
  • Нафталь М.Н.
  • Храмцова И.Н.
  • Баскаев П.М.
  • Кайтмазов Н.Г.
  • Шестакова Р.Д.
  • Асанова И.И.
  • Котухов С.Б.
  • Захаров Б.А.
  • Сухобаевский Ю.Я.
  • Полосухин В.А.
  • Кропачев Г.А.
  • Линдт В.А.
  • Тинаев Т.Р.
  • Вашкеев В.М.
  • Дмитриев И.В.
  • Бельский А.Н.
  • Волянский И.В.
  • Панфилова Л.В.
  • Гоготина В.В.
  • Исаак В.Я.
  • Говоров А.В.
  • Кужель Б.И.
RU2245377C2
КОМБИНИРОВАННЫЙ СПОСОБ ПЕРЕРАБОТКИ ТРУДНООБОГАТИМЫХ СВИНЦОВО-ЦИНКОВЫХ РУД 2015
  • Пахомова Галина Алексеевна
  • Башлыкова Татьяна Викторовна
  • Аширбаева Евгения Александровна
RU2601526C1
СПОСОБ РАЗДЕЛЕНИЯ МЕДНО-ЦИНКОВЫХ КОНЦЕНТРАТОВ 1998
  • Адамов Э.В.
  • Панин В.В.
  • Каравайко Г.И.
  • Воронин Д.Ю.
  • Крылова Л.Н.
RU2135298C1
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ ТРУДНОВСКРЫВАЕМЫХ ПИРРОТИНСОДЕРЖАЩИХ МАТЕРИАЛОВ, ПАССИВИРОВАННЫХ ПРОДУКТАМИ КИСЛОРОДНОЙ КОРРОЗИИ СУЛЬФИДОВ 2002
  • Нафталь М.Н.
  • Баскаев П.М.
  • Сухобаевский Ю.Я.
  • Шестакова Р.Д.
  • Храмцова И.Н.
  • Асанова И.Н.
  • Петров А.Ф.
  • Полосухин В.А.
  • Линдт В.А.
  • Волянский И.В.
  • Кропачев Г.А.
  • Макарова Т.А.
  • Вашкеев В.М.
  • Дмитриев И.В.
  • Бельский А.Н.
  • Козлов С.Г.
  • Гоготина В.В.
  • Шур М.Б.
  • Лапшина Н.А.
  • Железова Т.М.
  • Выдыш А.В.
RU2235139C1
Способ переработки минерального сырья, содержащего сульфиды металлов 2020
  • Крылова Любовь Николаевна
  • Рябцев Дмитрий Александрович
RU2739492C1

Иллюстрации к изобретению RU 2 731 977 C1

Реферат патента 2020 года СПОСОБ ИЗМЕЛЬЧЕНИЯ ЦИНКСОДЕРЖАЩЕЙ РУДЫ

Изобретение относится и горнорудной промышленности, в частности к гидрометаллургии цветных металлов, и может быть использовано при измельчении минерального сырья перед обогащением и гидрометаллургическими процессами, например при измельчении сульфидной цинковой руды. Способ заключается в измельчении исходного сырья в мельнице с подачей в нее поверхностно-активных веществ. В качестве поверхностно-активных веществ используют реагенты с гидрофильно-олеофильным соотношением выше 1. При этом содержание поверхностно-активного вещества в растворе 0,1-0,3%. Способ обеспечивает повышение эффективности измельчения, а также последующих процессов обогащения и гидрометаллургической обработки за счет увеличения удельной поверхности минерального сырья, вскрытия зерен минералов. 1 ил.

Формула изобретения RU 2 731 977 C1

Способ измельчения минерального сырья, включающий подачу в мельницу измельчаемого материала по меньшей мере одного поверхностно-активного вещества и мокрое измельчение, отличающийся тем, что измельчение ведут в растворе поверхностно-активного вещества с гидрофильно-олеофильным соотношением выше 1, причем содержание поверхностно-активного вещества в растворе 0,1-0,3%.

Документы, цитированные в отчете о поиске Патент 2020 года RU2731977C1

СПОСОБ ИЗМЕЛЬЧЕНИЯ МИНЕРАЛЬНОГО СЫРЬЯ 2007
  • Кондратьев Сергей Александрович
  • Каргаполов Юрий Сергеевич
  • Фоменко Владислав Викторович
  • Ростовцев Виктор Иванович
RU2347620C1
RU 2009145945 А, 20.06.2011
Способ измельчения минерального сырья 1989
  • Богуславский Владимир Яковлевич
  • Бойко Николай Васильевич
  • Петров Владимир Юрьевич
  • Кадыров Адиль Суратович
  • Осинина Вера Александровна
SU1618445A1
СПОСОБ ИЗМЕЛЬЧЕНИЯ МИНЕРАЛЬНОГО СЫРЬЯ 2017
  • Лобанов Владимир Геннадьевич
  • Замотин Павел Алексеевич
  • Абдрахманов Ильяс Сагынбекович
  • Павченко Алексей Сергеевич
  • Колмачихина Ольга Борисовна
  • Опошнян Владимир Ильич
RU2641527C1
CN 101304810 А, 12.11.2008
Теплообменник 1987
  • Бялый Борис Ильич
  • Динцин Владислав Абрамович
  • Степанов Александр Васильевич
  • Наришный Николай Васильевич
  • Бондаренко Владимир Николаевич
  • Розенштейн Исаак Леонидович
  • Владимиров Владимир Иванович
  • Голубев Эдуард Николаевич
  • Моисеев Юрий Алексеевич
SU1413395A1

RU 2 731 977 C1

Авторы

Колмачихина Эльвира Барыевна

Свиридов Владислав Владимирович

Лобанов Владимир Геннадьевич

Набойченко Станислав Степанович

Даты

2020-09-09Публикация

2019-04-25Подача