МИКРОСФЕРИЧЕСКИЙ КАТАЛИЗАТОР КРЕКИНГА "PHENOM" И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ Российский патент 2020 года по МПК B01J29/08 B01J21/04 B01J21/08 B01J21/16 B01J35/10 B01J37/04 

Описание патента на изобретение RU2733371C1

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к приготовлению катализаторов глубокого каталитического крекинга нефтяных фракций, для производства олефинов С24 и высокооктанового бензина. Предлагаемый катализатор для глубокого крекинга нефтяных фракций содержит цеолит Y в смешанной ионно-обменной форме и матрицы, состоящей из оксида алюминия, каолина и диоксида кремния.

Из литературных данных известно, что микросферический катализатор крекинга состоит из активного компонента и матрицы. Активным компонентом является цеолит Y, отличающийся решеточным модулем и представленный в различной катион-декатионированной форме, в частности HY, ReHY и ReY. Матрица катализатора выполняет роль носителя, в котором равномерно распределен активный компонент.

Эффективная работа катализатора определяется не только его каталитической активностью, но и стабильностью эксплуатационных характеристик в процессе крекинга углеводородов. Одним из таких показателей является стойкость гранул микросфер к истиранию, которая во многом определяется матрицей катализатора.

Известен способ получения катализатора крекинга на основе ультрастабильного цеолита, каолина, источников оксидов алюминия и кремния [US 6114267, B01J 29/06, 05.09.2000]. В указанном способе ультрастабилизацию цеолита осуществляют с применением гексафторсиликата аммония. Решеточный модуль цеолита при этом составляет 12,5 и содержание редкоземельных элементов 4% масс. Недостатком указанного способа является снижение кристалличности цеолита при взаимодействии с гексафторсиликатом аммония и низкая активность получаемого на основе такого цеолита катализатора. А также используется токсичный реагент гексафторсиликат.

Известен способ получения катализатора крекинга на основе ультрастабильного цеолита, глины и связующего, включающего псевдобемит, золь окиси алюминия, золь двуокиси кремния и фосфорсодержащий золь окиси алюминия [Патент РФ 2005116227 А, Патент РФ 2007140281 А, Патент РФ 2399415 С2, Патент РФ 2317143 С2]. При газофазной ультрастабилизации цеолита Y используется реагент SiCl4. Данный реагент является ядовитым. Указанные способы получения катализаторов имеют много стадий, в том числе таких длительных и трудоемких, как фильтрование и промывка, и большое количество сточных вод, содержащих ядовитые химические вещества.

Известен способ получения катализатора [патент РФ 2021012 С1], который содержит ультрастабильный цеолит Y, деалюминированный путем изоморфного замещения алюминия на кремний до молярного отношения 7-15, с кристалличностью 90-100%, параметром ячейки 24,44-24,55 и содержанием оксида натрия 0,14-0,56% масс. Цеолит диспергирован в оксидной матрице на основе каолина и кремнезоля. Сухие каолин и цеолит растирают, суспендируют в дистиллированной воде. В суспензию добавляют кремнезоль, гомогенизируют в течение 1 ч. Суспензию подвергают распылительной сушке. Прокаливают катализатор при 700°С 6 ч. Стабилизируют паром при 775°С 6 ч. Для снижения в кремнезоле остаточного содержания оксида натрия, который оказывает негативное воздействие на катализатор, используются многостадийный процесс кислотной обработки и фильтрации кремнезоля.

Известен способ получения катализатора [патент РФ 2300420], который содержит ультрастабильный цеолит Y, ультрастабилизацию которого проводят в две стадии:

- на первой стадии в среде водяного пара проводят ультрастабилизацию непосредственно с цеолитом У;

- на второй стадии осуществляют ультрастабилизацию цеолита в составе матрицы катализатора при прокалке готового катализатора. Данный способ получения катализатора имеет много стадий, является энергозатратным и трудоемким.

Известен способ получения катализатора [патент РФ 2064835], включающий смешение цеолита Y, глины, воды и связующего, формовку, сушку и прокалку, в котором в качестве связующего используют тригидрат оксида алюминия, который прокаливают при 800-1100°С в течение 0,5-2,0 с, обрабатывают азотной кислотой из расчета 0,1-0,2 молей HNO3 на 1 моль Al2O3 при 150-180°С в течение 4-18 ч и смешивают с цеолитом и глиной в массовом соотношении связующее: цеолит: глина 1:(2-10):(15-44). Цеолит Y используют в редкоземельной, аммонийной, водородной или смешанной ионно-обменной форме.

Недостатком данного способа является дополнительный процесс подготовки связующего из тригидрата алюминия, который требует проведения процесса под давлением при температурах 150-180°С в течение 4-18 ч.

Ближайшим известным решением аналогичной задачи по технической сущности является способ получения катализатора крекинга [патент РФ 2522438 С2], включающим стадию приготовления суспензии смешением мелкодисперсного цеолита ReHY, каолина, источников оксида алюминия и мелкодисперсного диоксида кремния, формовку при распылении суспензии в среде дымовых газов с температурой 140-170°С и дальнейшую прокалку полученных микросфер при температуре 550-650°С во вращающейся прокалочной печи.

Недостатком данного способа является низкий объем пор (0,35±0,05 см3/г) получаемого катализатора, что сказывается на недостаточном крекинге тяжелых остатков на промышленных установках крекинга и, как следствие, на снижении выходов дизельных фракций.

Основной задачей предлагаемого решения является разработка безотходной, бессточной технологии приготовления катализатора крекинга с высоким объемом пор (0,50±0,05 см3/г), высоким соотношением выходов дизельных фракций (ДФ) к тяжелому остатку (ТО) и высокой каталитической активностью при сохранении высокой стойкости к истиранию.

Отличительными чертами предлагаемого способа получения катализатора крекинга являются:

- концентрация суспензии по сухому веществу 450-600 г/л.

- соотношение компонентов в суспензии по сухому остатку: 25-35% масс. мелкодисперсного цеолита ReHY, 30-35% масс. каолина, 25-44% масс. источников оксида алюминия, 1-10% масс. мелкодисперсного диоксида кремния, 1-10% масс. крахмала.

- формовка при распылении суспензии в среде дымовых газов с температурой 140-170°С.

- дальнейшая прокалка полученных микросфер при температуре 650-680°С во вращающейся прокалочной печи.

- цеолит Y используют в смешанной ионно-обменной форме, представляющий собой мелкодисперсный ReHY (содержание Re2O3 3-10%, Na2O 0,01%, решеточный модуль цеолита 6-10).

- диоксид кремния представляет собой мелкодисперсную белую сажу марки БС 200.

- крахмал представляет собой мелкодисперсный порошок с кислотностью не более 20 согласно ГОСТ 7698-93.

Каолин в составе катализатора, играющий роль наполнителя и связующего, в условиях проведения процесса крекинга создает в гранулах катализатора дополнительные поры и, таким образом, также проявляет каталитическую активность, а именно проводит предварительный крекинг молекул вакуумного газойля размером более 30 А. Однако в процессе прокалки объем пор, создаваемый каолином, снижается, и использование только каолина в качестве наполнителя и связующего приводит к низкому преобразованию тяжелых фракций газойля в дизельные фракции. Использование крахмала приводит к тому, что на стадии прокалки микросферы в интервале температур 650-680°С происходит разрушение частиц крахмала и образование пор между частицами каолина. Образовавшиеся в объеме микросферы дополнительные поры приводят к увеличению общего объема пор всей гранулы катализатора и создают дополнительную каталитическую активность.

Таким образом, применение крахмала в качестве модифицирующей добавки при получении микросферического катализатора в заявляемом способе соответствует критерию "новизна". Промышленная применимость предлагаемого способа приготовления микросферического катализатора крекинга подтверждается следующими примерами.

Сырье:

1. Мелкодисперсный цеолит ReHY (содержание Re2O3 3-10%, Na2O 0,1-1%, решеточный модуль цеолита 6-10). ППП (потери при прокаливании) = 5,85%

2. Каолин. ППП (потери при прокаливании) = 14,18%

3. Источник оксида алюминия - моногидрат алюминия псевдобемитной модификации. ППП (потери при прокаливании) = 24,08%

4. Источник оксида алюминия - основной хлорид алюминия (содержание сухого остатка в пересчете на Al2O3 - 20,0%)

5. Мелкодисперсная белая сажа марки БС-200

6. Крахмал кукурузный по ГОСТ 7698-93

7. Вода химически очищенная (ХОВ) Оборудование:

1. Емкость с мешалкой на 1 м3

2. Распылительная сушилка (PC) с мощностью до 250 л/ч по испаренной влаге

3. Вращающаяся прокалочная печь с верхним пределом температур на 800°С

Все расчеты в примерах приводятся с учетом того, что рабочим объемом емкости с мешалкой принято до 80% объема от исходного.

В емкость предварительно набирается расчетное количество ХОВ, при включенной мешалке засыпаются расчетные количества сухих компонентов. Веса компонентов указаны с учетом влаги.

Пример 1

Для приготовления суспензии берут 53.11 кг мелкодисперсного цеолита ReHY, 93.22 кг каолина, 50.05 кг моногидрата алюминия в псевдобемитной модификации, 90 кг основного хлорида алюминия и 14 кг мелкодисперсной белой сажи марки БС-200. После засыпки всех компонентов суспензия перемешивается в емкости в течение 1 ч, затем осуществляется формовка микросфер в распылительной сушилке в среде дымовых газов с температурой 140-170°С, после - прокалка микросфер при температуре 650-680°С во вращающейся прокалочной печи.

Состав непрокаленного катализатора по сухим веществам представляет 25% мелкодисперсный цеолит ReHY, 40% каолин, 28% оксида алюминия и 7% мелкодисперсного оксида кремния, где соотношение моногидрат алюминия в псевдобемитной модификации к основному хлориду алюминия 1:0,5 и соотношение основного хлорида алюминия к мелкодисперсному оксиду кремния 1:0,8.

Пример 2

Для приготовления суспензии берут 53.11 кг мелкодисперсного цеолита ReHY, 81.57 кг каолина, 50.05 кг моногидрата алюминия в псевдобемитной модификации, 90 кг основного хлорида алюминия, 14 кг мелкодисперсной белой сажи марки БС-200 и 10 кг крахмала. После засыпки всех компонентов суспензия перемешивается в емкости в течение 1 ч, затем осуществляется формовка микросфер в распылительной сушилке в среде дымовых газов с температурой 140-170°С, после - прокалка микросфер при температуре 650-680°С во вращающейся прокалочной печи.

Состав непрокаленного катализатора по сухим веществам представляет 25% мелкодисперсный цеолит ReHY, 35% каолин, 28% оксида алюминия, 7% мелкодисперсного оксида кремния и 5% крахмал, где соотношение моногидрат алюминия в псевдобемитной модификации к основному хлориду алюминия 1:0,5, соотношение основного хлорида алюминия к мелкодисперсному оксиду кремния 1:0,8 и соотношение каолина к крахмалу 1:0,14.

Пример 3

Для приготовления суспензии берут 53.11 кг мелкодисперсного цеолита ReHY, 69.91 кг каолина, 50.05 кг моногидрата алюминия в псевдобемитной модификации, 90 кг основного хлорида алюминия, 14 кг мелкодисперсной белой сажи марки БС-200 и 20 кг крахмала. После засыпки всех компонентов суспензия перемешивается в емкости в течение 1 ч, затем осуществляется формовка микросфер в распылительной сушилке в среде дымовых газов с температурой 140-170°С, после - прокалка микросфер при температуре 650-680°С во вращающейся прокалочной печи.

Состав непрокаленного катализатора по сухим веществам представляет 25% мелкодисперсный цеолит ReHY, 30% каолин, 28% оксида алюминия, 7% мелкодисперсного оксида кремния и 10% крахмал, где соотношение моногидрат алюминия в псевдобемитной модификации к основному хлориду алюминия 1:0,5, соотношение основного хлорида алюминия к мелкодисперсному оксиду кремния 1:0,8 и соотношение каолина к крахмалу 1:0,33.

Пример 4

Для приготовления суспензии берут 53.11 кг мелкодисперсного цеолита ReHY, 58.26 кг каолина, 50.05 кг моногидрата алюминия в псевдобемитной модификации, 90 кг основного хлорида алюминия, 14 кг мелкодисперсной белой сажи марки БС-200 и 30 кг крахмала. После засыпки всех компонентов суспензия перемешивается в емкости в течение 1 ч, затем осуществляется формовка микросфер в распылительной сушилке в среде дымовых газов с температурой 140-170°С, после - прокалка микросфер при температуре 650-680°С во вращающейся прокалочной печи.

Состав непрокаленного катализатора по сухим веществам представляет 25% мелкодисперсный цеолит ReHY, 25% каолин, 28% оксида алюминия, 7% мелкодисперсного оксида кремния и 15% крахмал, где соотношение моногидрат алюминия в псевдобемитной модификации к основному хлориду алюминия 1:0,5, соотношение основного хлорида алюминия к мелкодисперсному оксиду кремния 1:0,8 и соотношение каолина к крахмалу 1:0,6.

Пример 5

Для приготовления суспензии берут 53.11 кг мелкодисперсного цеолита ReHY, 46.61 кг каолина, 50.05 кг моногидрата алюминия в псевдобемитной модификации, 90 кг основного хлорида алюминия, 14 кг мелкодисперсной белой сажи марки БС-200 и 40 кг крахмала. После засыпки всех компонентов суспензия перемешивается в емкости в течение 1 ч, затем осуществляется формовка микросфер в распылительной сушилке в среде дымовых газов с температурой 140-170°С, после - прокалка микросфер при температуре 650-680°С во вращающейся прокалочной печи.

Состав непрокаленного катализатора по сухим веществам представляет 25% мелкодисперсный цеолит ReHY, 20% каолин, 28% оксида алюминия, 7% мелкодисперсного оксида кремния и 20% крахмал, где соотношение моногидрат алюминия в псевдобемитной модификации к основному хлориду алюминия 1:0,5, соотношение основного хлорида алюминия к мелкодисперсному оксиду кремния 1:0,8 и соотношение каолина к крахмалу 1:1.

У полученных образцов затем определяли их насыпную плотность, объем пор, стойкость к истиранию и показатели каталитической активности в крекинге керосино-газойлевой фракции в соответствии ASTM D 3907-03 : t 1482°С, СТО 3.0, WHSV 16 ч1.

Из результатов таблицы 1 следует, что в составе катализатора изменение соотношения каолина и крахмала оказывает существенное влияние на показатели объема пор и соотношения выходов дизельной фракции и тяжелого остатка.

Анализ представленных материалов позволяет сделать вывод о том, что предлагаемое техническое решение дает возможность получать микросферический катализатор по бессточной технологии приготовления с высокой каталитической активностью и селективностью по выходу дизельных фракций, а также обладающий высокой прочностью к истиранию.

Необходимо отметить, что наиболее оптимальным содержанием крахмала в катализаторе является диапазон 1-10%, так как при дальнейшем увеличении содержания крахмала наблюдается существенное ухудшение прочности гранул катализатора, что ограничивает использование на промышленных установках крекинга. Кроме того, при содержании крахмала в катализаторе более 10% рост каталитической активности и селективности по выходу дизельных фракций незначителен.

Похожие патенты RU2733371C1

название год авторы номер документа
Гранулированный катализатор крекинга и способ его приготовления 2018
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
RU2677870C1
МИКРОСФЕРИЧЕСКИЙ КАТАЛИЗАТОР КРЕКИНГА "ОКТИФАЙН" И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2012
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
  • Илибаев Радик Салаватович
  • Суркова Лидия Васильевна
  • Гариева Гульназ Фаниловна
RU2522438C2
Способ приготовления адсорбента для очистки газа и жидкости 2019
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
RU2709689C1
Способ получения мелкодисперсного порошка моногидроксида алюминия псевдобемитной структуры 2019
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
RU2712601C1
ШАРИКОВЫЙ КАТАЛИЗАТОР КРЕКИНГА "АДАМАНТ" И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2012
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
  • Илибаев Радик Салаватович
  • Суркова Лидия Васильевна
  • Гариева Гульназ Фаниловна
RU2517171C1
Способ получения гранулированного цеолита типа Х без связующих веществ 2017
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
  • Илибаев Радик Салаватович
  • Суркова Лидия Васильевна
  • Кислицын Руслан Алексеевич
RU2653033C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ЦЕОЛИТНОГО АДСОРБЕНТА NaA 2017
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
  • Илибаев Радик Салаватович
  • Суркова Лидия Васильевна
  • Кислицын Руслан Алексеевич
RU2655104C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕРИЧЕСКОГО КАТАЛИЗАТОРА ОКИСЛИТЕЛЬНОГО ХЛОРИРОВАНИЯ ЭТИЛЕНА 2016
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
  • Суркова Лидия Васильевна
  • Илибаев Радик Салаватович
  • Кислицын Руслан Алексеевич
  • Аллагузин Ильгиз Хамзович
  • Джемилев Усеин Меметович
  • Кутепов Борис Иванович
  • Павлова Ирина Николаевна
  • Афанасьев Федор Игнатьевич
  • Фаткуллин Раиль Наилевич
  • Ихсанов Валерий Альбертович
  • Пигин Николай Владимирович
RU2639151C1
Способ получения Ni-W катализатора гидрокрекинга углеводородного сырья 2018
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
  • Илибаев Радик Салаватович
  • Суркова Лидия Васильевна
  • Сараев Антон Николаевич
  • Кислицын Руслан Алексеевич
  • Аллагузин Ильгиз Хамзович
RU2671851C1
Способ получения синтетического цеолита структурного типа пентасил 2017
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
  • Никаноров Вадим Борисович
  • Илибаев Радик Салаватович
  • Суркова Лидия Васильевна
  • Коровников Евгений Анатольевич
  • Шишкин Максим Михайлович
  • Мельников Артем Сергеевич
RU2669194C1

Реферат патента 2020 года МИКРОСФЕРИЧЕСКИЙ КАТАЛИЗАТОР КРЕКИНГА "PHENOM" И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к катализатору глубокого каталитического крекинга нефтяных фракций для производства олефинов С24 и высокооктанового бензина и к способу его получения. Микросферический катализатор крекинга получен из суспензии, включающей в своем составе по сухому остатку 25-35% масс. мелкодисперсного цеолита ReHY, 30-35% масс. каолина, 25-44% масс. источников оксида алюминия, 1-10% масс. мелкодисперсного диоксида кремния и 1-10% масс. крахмала, с концентрацией суспензии по сухому веществу 450-600 г/л, и включающий формовку при распылении суспензии в среде дымовых газов с температурой 140-170°С и прокалку полученных микросфер при температуре 650-680°С во вращающейся прокалочной печи. Технический результат заключается в получении микросферического катализатора крекинга с высокими показателями по объему пор, высоким соотношением выходов дизельных фракций к тяжелому остатку и высокой каталитической активностью при сохранении высокой стойкости к истиранию. 2 н.п. ф-лы, 1 табл., 5 пр.

Формула изобретения RU 2 733 371 C1

1. Микросферический катализатор крекинга, который получен из суспензии, включающей в своем составе по сухому остатку 25-35% масс. мелкодисперсного цеолита ReHY, 30-35% масс. каолина, 25-44% масс. источников оксида алюминия, 1-10% масс. мелкодисперсного диоксида кремния и 1-10% масс. крахмала, с концентрацией суспензии по сухому веществу 450-600 г/л, и включающий формовку при распылении суспензии в среде дымовых газов с температурой 140-170°С и прокалку полученных микросфер при температуре 650-680°С во вращающейся прокалочной печи.

2. Способ получения микросферического катализатора крекинга по п. 1, отличающийся тем, что наполнитель и связующее представлены в виде смеси компонентов каолина и крахмала в весовом соотношении 1:(0,14-0,33).

Документы, цитированные в отчете о поиске Патент 2020 года RU2733371C1

CN 108262056 A, 10.07.2018
МИКРОСФЕРИЧЕСКИЙ КАТАЛИЗАТОР КРЕКИНГА "ОКТИФАЙН" И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2012
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
  • Илибаев Радик Салаватович
  • Суркова Лидия Васильевна
  • Гариева Гульназ Фаниловна
RU2522438C2
CN 0108262056 A, 10.07.2018
CN 109304205 A, 05.02.2019
CN 1831090 A, 13.09.2006
CN104014361 A, 03.09.2014
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНЫХ КАТАЛИЗАТОРОВ НА ПОДЛОЖКЕ 2003
  • Эйгарден Арне Халльвард
  • Перес-Рамирес Хавьер
  • Уоллер Дэвид
  • Шеффель Клаус
  • Брэкенбери Дэвид М.
RU2329100C2
Микросферический катализатор для крекинга нефтяных фракций 2018
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Липин Петр Владимирович
  • Дмитриев Константин Игоревич
  • Бобкова Татьяна Викторовна
RU2673811C1

RU 2 733 371 C1

Авторы

Бодрый Александр Борисович

Усманов Ильшат Фаритович

Тагиров Айдар Шамилевич

Рахматуллин Эльвир Маратович

Даты

2020-10-01Публикация

2020-02-17Подача