Изобретение относится к области получения материалов, которые могут применяться в электронике в качестве контактов для конденсаторов.
Известен способ получения высокочистого порошка монооксида ниобия (NbO) с использованием в качестве исходной смеси высших оксидов ниобия и порошка или гранул металлического ниобия; включающий нагревание и взаимодействие уплотненной смеси в контролируемой атмосфере до достижения температуры, превышающей 1945°С, при которой NbO переходит в жидкое состояние; последующее затвердевание жидкого NbO и фрагментирование с образованием частиц NbO, используемых для применения в качестве анодов конденсатора. (Патент US 7585486, МПК C01G 33/00, 2009 год).
Однако известный способ обеспечивает только получение поликристаллического порошка оксида ниобия, который характеризуется высокой пористостью и значительной дефектностью, а также низкой чистотой за счет неоднофазности полученного продукта.
Наиболее близким по технической сущности к предлагаемому решению является способ получения монокристалла оксида ниобия, который был проведен путем бестигельной зонной плавки в оптической системе плавающей зоны (Optical floating zone system) FZ-T-10000-H-VI-VP (Crystal Systems Inc., Japan). Для роста монокристалла был зашихтован поликристаллический монооксид ниобия из смеси порошков Nb и Nb2O5 сверхстехиометрического состава NbO1.085. Рост монокристалла проводился при следующих условиях: мощность 2400 Вт, скорость роста 8 мм/ч, атмосфера аргона с избыточным давлением 5 бар, поток газа 0.800 л/мин, скорость вращения верхнего штока 13 об/мин, нижний шток оставался неподвижным. Выращенный монокристалл монооксида ниобия HR146 имел серый цвет, монокристалличность была установлена с помощью Лауэграмм. Согласно ренгено-фазовому анализу, монокристалл HR146 является двухфазным, кроме отражений, соответствующих отражениям монооксида ниобия, на рентгенограмме присутствуют отражения примесной фазы NbOx. Состав полученного монокристалла соответствует сверхстехиометрическому составу NbO1.06. Во втором варианте для роста монокристалла был зашихтован монооксид ниобия из смеси порошков Nb и Nb2O5 достехиометрического состава NbO0.974. Рост монокристалла проводился при тех же условиях, указанных выше. Согласно ренгено-фазовому анализу, монокристалл HR156 является однофазным, на рентгенограмме не имеется примесных линий. Указан состав полученного монокристалла, определенный методом ТГА, который соответствует сверхстехиометрическому составу NbO1.005. (Roth Holger, Single crystal growth and electron spectroscopy of d1-systems, 2008, PhD thesis, pp. 32-35, Koln University, http://kups.ub.uni-koeln.de/2335/).
Однако недостатком известного способа (прототипа) является возможность получения только сверхстехиометрического состава монокристалла оксида ниобия, не обеспечивающего в дальнейшем стабильность его свойств, особенно при воздействии высоких температур.
Таким образом, перед авторами стояла задача разработать способ получения монокристалла оксида ниобия, обеспечивающего получение монокристалла оксида ниобия стехиометрического состава, который является более стабильным и сохраняет свои свойства при воздействии высоких температур.
Поставленная задача решена в предлагаемом способе получения монокристалла оксида ниобия, включающем бестигельную зонную плавку в оптической системе с использованием в качестве исходного материала поликристаллического порошка оксида ниобия в атмосфере аргона в условиях избыточного давления при одновременном вращательном и вертикальном движении штока с исходным материалом и в отсутствии вертикального перемещения штока с затравочным материалом, в котором осуществляют плавку с использованием двух биэллипсоидных зеркал, установленных в вертикальной конфигурации, и ксеноновой лампы мощностью 5 кВт в качестве источника излучения, расположенной в фокальной точке нижнего зеркала, при этом зона расплава находится в фокальной точке верхнего зеркала, с регулировкой плотности светового потока, попадающего на зону расплава, механическим или автоматическим перемещением шторок из нержавеющей стали, при постоянном давлении 3-4 бара, и скорости передвижения штока с исходным материалом в вертикальном направлении 7-9 мм/час, при этом обеспечено вращательное движение как штока с исходным материалом, так и штока с затравочным материалом, равное 2-4 об/мин и 1-2 об/мин, соответственно, причем оба штока вращаются в разных направлениях.
В настоящее время из патентной и научно-технической литературы не известен способ получения монокристалла оксида ниобия путем бестигельной зонной плавки в оптической системе в предлагаемых авторами условиях проведения процесса.
Известно использование бестигельной оптической зонной плавки для получения особо чистых монокристаллов, в частности, монокристаллов кремния, арсенида галлия, а также ряда тугоплавких металлов и их сплавов. Однако только исследования, проведенные авторами, позволили разработать способ получения монокристалла оксида ниобия стехиометрического состава, имеющего стабильную упорядоченную структуру, который вследствие особенностей своего состава характеризуется стабильностью свойств, в частности при высоких температурах, наряду с высокой чистотой за счет однофазности получаемого продукта. Авторами предлагаются условия проведения процесса, обеспечивающие достижение положительного эффекта, а именно стабильности свойств получаемого продукта наряду с его высокой чистотой. Так, по сравнению с известным способом-прототипом использование системы только из двух биэллипсоидных зеркал, установленных в вертикальной конфигурации, и одной ксеноновой лампы мощностью 5 кВт в качестве источника излучения, расположенной в фокальной точке нижнего зеркала, позволяет повысить температуру рабочей зоны до 2800оС (в способе-прототипе – 2100оС) при более низких значениях избыточного давления (3-4 бар в прдлагаемом способе, 5 бар в известном), что, учитывая высокую температуру плавления NbO ~ 1945 oC, позволяет оперировать зоной расплава в более широком диапазоне температур и получать гомогенный образец по всему составу. Коме того, обеспечивает более высокую скорость роста кристалла (9-11 мм/час в предлагаемом способе, 8 мм/час в известном способе). Использование вращательного движения штока с затравочным материалом и штока с исходным материалом при разных скоростях в противоположных направлениях обеспечивает более равномерное распределение компонентов расплава по объему растущего монокристалла. Применение механического или автоматического перемещение шторок из нержавеющей стали перекрывающих световой поток при постоянной мощности электроэнергии, подаваемой на лампу, обеспечивает более стабильный температурный режим в зоне расплава, что также способствует более равномерному распределению компонентов расплава по объему растущего монокристалла. За счет разной скорости движения верхнего с исходным материалом и нижнего с затравочным материалом штоков происходит вытягивание монокристалла из зоны расплава. В результате выросший монокристалл имеет меньший диаметр (~ 2 мм), чем заготовка (~ 4 мм).
Предлагаемый способ может быть осуществлен следующим образом. Для осуществления роста монокристалла NbO1.00 используют в качестве исходного материала поликристаллический оксид ниобия NbO1.00, в качестве затравочного материала используют монокристалл NbO1.00. Из поликристалла формируют заготовку с заостренным концом со следующими размерами: 50 мм длинной, 5*5 мм сечение, предварительно спрессованную и спеченную при температуре 1680-1720 oC в течение 2.5-3 часов. Из монокристалла формируют затравку размерами 3*2*1 мм с заостренным концом. Рост монокристалла оксида монооксида ниобия осуществляют бестигельной зонной плавкой в оптической системе с использованием двух биэллипсоидных зеркал, установленных в вертикальной конфигурации, и ксеноновой лампы мощностью 5 кВт в качестве источника излучения, расположенной в фокальной точке нижнего зеркала, при этом зона расплава находится в фокальной точке верхнего зеркала, с регулировкой плотности светового потока, попадающего на зону расплава, механическим или автоматическим перемещением шторок из нержавеющей стали, в атмосфере аргона и при постоянном давлении 3-4 бара, при скорости передвижения штока с исходным материалом в вертикальном направлении 7-9 мм/час, при этом обеспечено вращательное движение как штока с исходным материалом, так и штока с затравочным материалом, равное 2-4 об/мин и 1-2 об/мин, соответственно, причем оба штока вращаются в разных направлениях. В предлагаемых условиях обеспечивается скорость роста монокристалла равная 9-11 мм/час. Кристаллическая структура полученного продукта была исследована методом рентгеновского фазового анализа (ДРОН – 2.0), анализ рентгенограммы (фиг. 2) показал, что монокристалл монооксида ниобия NbO1.00 содержит только одну упорядоченную кубическую фазу со структурой Pm-3m, период кристаллической решетки равен a = 421.2 пм и имеет огранку, состоящую из плоскостей (111). Форма и поверхность монокристаллов была изучена с помощью оптической микроскопии (Альтами МЕТ 1М) и сканирующей электронной микроскопии (Quanta 200 Pegasus (FEI). На фиг. 3 представлена поверхность монокристалла монооксида ниобия, поверхность гладкая, имеется металлический блеск. Для изучения химического и элементного состава выращенного монокристалла был использован EDAX-анализ. Дифракция отраженных электронов (EBSD) была использована для исследования текструры и кристаллографических ориентаций монокристаллов монооксида ниобия. Анализ дифракционной картины и пересечения линий Кикучи подтвердил, что монокристалл монооксида ниобия NbO1.00 имеет огранку, состоящую из плоскостей (111).
На фиг. 1 представлена фотография полученного монокристалла монооксида ниобия NbO1.00. Образец имеет металлический блеск, размеры образца ~ 18 мм в длину и 2-4 мм в диаметре.
На фиг.2 приведена рентгенограммы монокристалла монооксида ниобия NbO1.00.
На фиг. 3 представлена поверхность монокристалла монооксида ниобия NbO1.00.
Предлагаемое техническое решение иллюстрируется следующими примерами.
Пример 1. Для осуществления роста монокристалла NbO1.00 используют в качестве исходного материала поликристаллический оксид ниобия NbO1.00, имеющий такие свойства: состав - 100 масс.% NbO1.00; период кристаллической решетки a = 421.21 пм; размер зерен 30 мкм; плотность 7.27 г/см3, удельная поверхность 0.01 м2/г; в качестве затравочного материала используют монокристалл NbO1.00. Из поликристалла формируют заготовку с заостренным концом со следующими размерами: 50 мм длинной, 5*5 мм сечение, предварительно спрессованную и спеченную при температуре 1680 oC в течение 3 часов. Из монокристалла формируют затравку размерами 3*2*1 мм с заостренным концом. Рост монокристалла оксида монооксида ниобия осуществляют бестигельной зонной плавкой в оптической системе на установке УРН-2-3П (Московский энергетический институт, Москва, Россия) с использованием двух биэллипсоидных зеркал, установленных в вертикальной конфигурации, и ксеноновой лампы мощностью 5 кВт в качестве источника излучения, расположенной в фокальной точке нижнего зеркала, при этом зона расплава находится в фокальной точке верхнего зеркала, с регулировкой плотности светового потока, попадающего на зону расплава, механическим или автоматическим перемещением шторок из нержавеющей стали, в атмосфере аргона и при постоянном давлении 3 бара, при скорости передвижения штока с исходным материалом в вертикальном направлении 7 мм/час, при этом обеспечено вращательное движение как штока с исходным материалом, так и штока с затравочным материалом, равное 2 об/мин и 1 об/мин, соответственно, причем оба штока вращаются в разных направлениях. В предлагаемых условиях обеспечивается скорость роста монокристалла равная 9 мм/час. Получают однофазный монокристалл монооксида ниобия стехиометрического состава NbO1.00, который имеет стабильную упорядоченную структуру (пространственная группа Pm-3m), период кубической решетки a = 421.21 пм, имеет огранку, состоящую из плоскостей (111).
Пример 2. Для осуществления роста монокристалла NbO1.00 используют в качестве исходного материала поликристаллический оксид ниобия NbO1.00, имеющий такие свойства: состав - 100 масс.% NbO1.00; период кристаллической решетки a = 421.21 пм; размер зерен 30 мкм; плотность 7.27 г/см3, удельная поверхность 0.01 м2/г; в качестве затравочного материала используют монокристалл NbO1.00. Из поликристалла формируют заготовку с заостренным концом со следующими размерами: 50 мм длинной, 5*5 мм сечение, предварительно спрессованную и спеченную при температуре 1680 oC в течение 3 часов. Из монокристалла формируют затравку размерами 3*2*1 мм с заостренным концом. Рост монокристалла оксида монооксида ниобия осуществляют бестигельной зонной плавкой в оптической системе на установке УРН-2-3П (Московский энергетический институт, Москва, Россия) с использованием двух биэллипсоидных зеркал, установленных в вертикальной конфигурации, и ксеноновой лампы мощностью 5 кВт в качестве источника излучения, расположенной в фокальной точке нижнего зеркала, при этом зона расплава находится в фокальной точке верхнего зеркала, с регулировкой плотности светового потока, попадающего на зону расплава, механическим или автоматическим перемещением шторок из нержавеющей стали, в атмосфере аргона и при постоянном давлении 4 бара, при скорости передвижения штока с исходным материалом в вертикальном направлении 9 мм/час, при этом обеспечено вращательное движение как штока с исходным материалом, так и штока с затравочным материалом, равное 4 об/мин и 2 об/мин, соответственно, причем оба штока вращаются в разных направлениях. В предлагаемых условиях обеспечивается скорость роста монокристалла равная 11 мм/час. Получают однофазный монокристалл монооксида ниобия стехиометрического состава NbO1.00, который имеет стабильную упорядоченную структуру (пространственная группа Pm-3m), период кубической решетки a = 421.21 пм, имеет огранку, состоящую из плоскостей (111).
Таким образом, авторами предлагается способ получения монокристалла оксида ниобия, обеспечивающий получение монокристалла монооксида ниобия стехиометрического состава NbO1.00, который имеет стабильную упорядоченную структуру, содержит только одну фазу, обладает минимальной дефектностью. Материал характеризуется стабильностью свойств, сохраняя свои свойства при высокотемпературных воздействиях.
Работа выполнена при финансовой поддержке Российского Научного Фонда (проект № 19-73-20012) в ИХТТ Уро РАН и ОИ «ФТИК» (ИФМ УрО РАН).
название | год | авторы | номер документа |
---|---|---|---|
Способ получения монокристалла монооксида титана | 2021 |
|
RU2758402C1 |
Способ получения монокристалла диоксида титана | 2022 |
|
RU2792517C1 |
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ ДИСКОВ ИЗ ТУГОПЛАВКИХ МЕТАЛЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2553905C2 |
СПОСОБ ВЫРАЩИВАНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ МОНОКРИСТАЛЛОВ МЕТОДОМ СИНЕЛЬНИКОВА-ДЗИОВА | 2016 |
|
RU2626637C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛЫХ МОНОКРИСТАЛЛОВ КРЕМНИЯ | 2006 |
|
RU2324017C1 |
Способ получения абразивных материалов | 1978 |
|
SU823409A1 |
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛА ОКСИДА ЦИНКА | 2008 |
|
RU2474625C2 |
СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ БЕСТИГЕЛЬНЫМ МЕТОДОМ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2009 |
|
RU2426824C2 |
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛОВ БОРИДОВ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ | 1990 |
|
RU2040599C1 |
МОНОКРИСТАЛЛ СО СТРУКТУРОЙ ГАЛЛОГЕРМАНАТА КАЛЬЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ДИСКОВ В УСТРОЙСТВАХ НА ПОВЕРХНОСТНО-АКУСТИЧЕСКИХ ВОЛНАХ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2003 |
|
RU2250938C1 |
Изобретение относится к области технологии материалов, которые могут применяться в электронике в качестве контактов для конденсаторов. Cпособ получения монокристалла оксида ниобия включает бестигельную зонную плавку в оптической системе с использованием в качестве исходного материала поликристаллического порошка оксида ниобия в атмосфере аргона в условиях избыточного давления при одновременном вращательном и вертикальном движении штока с исходным материалом и в отсутствии вертикального перемещения штока с затравочным материалом, при этом плавку осуществляют с использованием двух биэллипсоидных зеркал, установленных в вертикальной конфигурации, и ксеноновой лампы мощностью 5 кВт в качестве источника излучения, расположенной в фокальной точке нижнего зеркала, при этом зона расплава находится в фокальной точке верхнего зеркала, с регулировкой плотности светового потока, попадающего на зону расплава, механическим или автоматическим перемещением шторок из нержавеющей стали, при постоянном давлении 3-4 бар и скорости передвижения штока с исходным материалом в вертикальном направлении 7-9 мм/час, при этом осуществляют вращательное движение как штока с исходным материалом, так и штока с затравочным материалом, равное 2-4 об/мин и 1-2 об/мин соответственно, причем оба штока вращаются в разных направлениях. Изобретение обеспечивает получение монокристалла монооксида ниобия стехиометрического состава NbO1.00, который имеет стабильную упорядоченную структуру, содержит только одну фазу, обладает минимальной дефектностью. Материал характеризуется стабильностью свойств, сохраняя свои свойства при высокотемпературных воздействиях. 3 ил.
Способ получения монокристалла оксида ниобия, включающий бестигельную зонную плавку в оптической системе с использованием в качестве исходного материала поликристаллического порошка оксида ниобия в атмосфере аргона в условиях избыточного давления при одновременном вращательном и вертикальном движении штока с исходным материалом и в отсутствии вертикального перемещения штока с затравочным материалом, отличающийся тем, что осуществляют плавку с использованием двух биэллипсоидных зеркал, установленных в вертикальной конфигурации, и ксеноновой лампы мощностью 5 кВт в качестве источника излучения, расположенной в фокальной точке нижнего зеркала, при этом зона расплава находится в фокальной точке верхнего зеркала, с регулировкой плотности светового потока, попадающего на зону расплава, механическим или автоматическим перемещением шторок из нержавеющей стали, при постоянном давлении 3-4 бар и скорости передвижения штока с исходным материалом в вертикальном направлении 7-9 мм/ч, при этом обеспечено вращательное движение как штока с исходным материалом, так и штока с затравочным материалом, равное 2-4 об/мин и 1-2 об/мин соответственно, причем оба штока вращаются в разных направлениях.
HOLGER ROTH, Single crystal growth and electron spectroscopy of d1-systems, Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultat der Universitat zu Koln, 2008, 22-24, 32-35 | |||
Установка для бестигельной зоны плавки | 1967 |
|
SU244306A1 |
Устройство для выращивания монокристаллов | 2017 |
|
RU2656331C1 |
JP 2007099602 А,19.04.2007 | |||
JP 2013224237 A, 31.10.2013 | |||
US |
Авторы
Даты
2020-10-26—Публикация
2020-06-01—Подача