АДСОРБЦИОННАЯ УСТАНОВКА ПОДГОТОВКИ ПРИРОДНОГО ГАЗА Российский патент 2021 года по МПК B01D53/14 

Описание патента на изобретение RU2750696C1

Изобретение относится к области газовой промышленности, а именно к технике и технологии подготовки природного газа, и может быть использовано в газовой, нефтяной и других отраслях промышленности на адсорбционных установках подготовки углеводородных газов.

При подготовке природного газа, где применяются адсорбционные процессы, одной из проблем является применение сбросных низконапорных газов дегазации при стабилизации конденсата. Как правило, на адсорбционных установках при осушке и отбензинивании углеводородного газа сбросные низконапорные газы дегазации, полученные при стабилизации конденсата, отводят на факел.

Известна адсорбционная установка подготовки природного газа (патент РФ на изобретение №2367505 С1, МПК B01D 53/02, B01D 53/26. Установка подготовки газа. / Аджиев А.Ю., Белошапка А.Н., Килинник А.В., Морева Н.П., Хуснудинова А.А., Мельчин В.В.; №2007146495/15; заявл. 12.12.2007; опубл. 20.09.2009, Бюл. №26. - 9 с.), включающая дроссель, входной сепаратор, адсорберы, верх которых соединен с линией подачи газа, линией подачи газа охлаждения и линией отвода отработанного газа регенерации, а низ соединен с линией отвода подготовленного газа, линией отвода газа охлаждения и линией подачи газа регенерации, фильтрующее устройство, печь, сепаратор высокого давления, при этом линия отвода подготовленного газа соединена с фильтрующим устройством, линия отвода газа охлаждения соединена с печью, линия отвода отработанного газа регенерации соединена с сепаратором высокого давления, а линия подачи газа охлаждения соединена с линией подачи исходного газа перед дросселем, входной сепаратор установлен после дросселя, выход газа из входного сепаратора соединен с дополнительно установленным первым рекуперативным теплообменником, выход газа из которого соединен с адсорберами, линия отвода газа охлаждения соединена с печью через дополнительно установленный второй рекуперативный теплообменник, линия отвода отработанного газа регенерации последовательно соединена со вторым и первым рекуперативными теплообменниками и сепаратором высокого давления, а линия отвода отработанного газа регенерации из сепаратора высокого давления соединена с линией подачи исходного газа перед входным сепаратором, при этом линия подачи газа охлаждения соединена с фильтром-сепаратором, выход из которого соединен с верхом адсорберов, а сепаратор высокого давления последовательно соединен с сепараторами среднего и низкого давления, при этом линия отвода газа дегазации с сепаратора среднего давления соединена с линией топливного газа, а линия отвода сбросного низконапорного газа дегазации от сепаратора низкого давления соединена с факельной линией, и на линии отвода отработанного газа регенерации между первым рекуперативным теплообменником и сепаратором высокого давления установлен пропановый холодильник, а на линии отвода отработанного газа регенерации и на линии отвода газа охлаждения перед вторым рекуперативным теплообменником установлены фильтры.

Недостатком известной установки является потеря газообразных С1…С4 и жидких углеводородных компонентов С5+, вследствие отвода сбросных низконапорных газов дегазации на факел.

Наиболее близкой по технической сущности и достигаемому результату является адсорбционная установка подготовки природного газа (патент РФ на изобретение №2653023 С1, МПК B01D 53/00. Установка подготовки газа. / Сыроватка В.А., Холод В.В., Ясьян Ю.П.; №2017133884; заявл. 28.09.2017; опубл. 04.05.2018, Бюл. №13. - 13 с.), включающая регулирующий клапан, входной сепаратор, адсорберы, верх которых соединен с линией подачи исходного газа, линией подачи газа охлаждения и линией отвода насыщенного газа регенерации, а низ соединен с линией отвода подготовленного газа, линией отвода газа охлаждения и линией подачи газа регенерации, фильтрующее устройство, печь, сепаратор высокого давления, который последовательно соединен с сепараторами среднего и низкого давления, при этом линия подачи исходного газа проходит через регулирующий клапан и соединена со входным сепаратором, выход газа из входного сепаратора соединен с первым рекуперативным теплообменником, выход газа из которого соединен с верхом адсорберов, линия отвода подготовленного газа соединена с первым фильтрующим устройством, при этом линия подачи газа охлаждения соединена с линией подачи исходного газа перед регулирующем клапаном и соединена с фильтром-сепаратором, выход газа из которого соединен с верхом адсорберов, а линия отвода газа охлаждения последовательно соединена со вторым фильтрующим устройством, вторым рекуперативным теплообменником и печью, линия подачи газа регенерации соединена с низом адсорберов, а линия отвода насыщенного газа регенерации последовательно соединена с третьим фильтрующим устройством, вторым рекуперативным теплообменником, первым рекуперативным теплообменником, пропановым холодильником и сепаратором высокого давления, при этом линия отвода газового конденсата из сепаратора высокого давления через дроссель соединена с сепаратором среднего давления, в котором линия отвода газового конденсата через дроссель соединена с сепаратором низкого давления, выход из которого соединен с линией отвода стабильного конденсата, при этом линия отвода газа дегазации с сепаратора среднего давления соединена с линией топливного газа, и линия отвода сбросного низконапорного газа дегазации от сепаратора низкого давления соединена с факельной линией, а линия отвода отработанного газа регенерации из сепаратора высокого давления соединена с линией подачи исходного газа после регулирующего клапана перед входным сепаратором, подпиточную емкость, выход которой соединен через линию подачи метанола с линией насыщенного газа регенерации между первым рекуперативным теплообменником и пропановым холодильником, и блок регенерации метанола, вход которого соединен с линией отвода технической воды содержащей метанол из сепаратора высокого давления, а выход соединен через линию подачи регенерированного метанола с линией насыщенного газа регенерации между первым рекуперативным теплообменником и пропановым холодильником.

Недостатком известной установки является потеря газообразных (С1…С4) и жидких (С5+) углеводородных компонентов, вследствие отвода сбросных низконапорных газов дегазации на факел, а также ограничение выработки стабильного конденсата при ступенчатой сепарации, из-за недостаточного отделения легких углеводородов (С1…С4).

Задачей изобретения является усовершенствование установки подготовки газа, обеспечивающее повышение эффективности ее работы при утилизации сбросного низконапорного газа дегазации и при возможности достаточного отделения легких углеводородов (С1…С4) при стабилизации газового конденсата методом ступенчатой сепарации.

Техническим результатом является обеспечение возможности экологизации и ресурсосбережения установки за счет выработки дополнительного количества топливного газа и стабильного углеводородного конденсата.

Технический результат достигается тем, что адсорбционная установка подготовки природного газа, включает регулирующий клапан, входной сепаратор, адсорберы, верх которых соединен с линией подачи исходного газа, линией подачи газа охлаждения и линией отвода насыщенного газа регенерации, а низ соединен с линией отвода подготовленного газа, линией отвода газа охлаждения и линией подачи газа регенерации, при этом линия подачи исходного газа проходит через регулирующий клапан и соединена со входным сепаратором, выход газа из входного сепаратора соединен с первым рекуперативным теплообменником, выход газа из которого соединен с верхом адсорберов, линия отвода подготовленного газа соединена с первым фильтрующим устройством, при этом линия подачи газа охлаждения соединена с линией подачи исходного газа перед регулирующем клапаном и соединена с фильтром-сепаратором, выход газа из которого соединен с верхом адсорберов, а линия отвода газа охлаждения последовательно соединена со вторым фильтрующим устройством, вторым рекуперативным теплообменником и первой печью, линия подачи газа регенерации соединена с низом адсорберов, а линия отвода насыщенного газа регенерации последовательно соединена с третьим фильтрующим устройством, вторым рекуперативным теплообменником, первым рекуперативным теплообменником, пропановым холодильником и сепаратором высокого давления, при этом линия отвода газового конденсата из сепаратора высокого давления через дроссель соединена с сепаратором среднего давления, в котором линия отвода газового конденсата через дроссель соединена с сепаратором низкого давления, выход из которого соединен с линией отвода стабильного конденсата, при этом линия отвода газа дегазации с сепаратора среднего давления соединена с линией топливного газа, и линия отвода сбросного низконапорного газа дегазации от сепаратора низкого давления соединена с факельной линией, а линия отвода отработанного газа регенерации из сепаратора высокого давления соединена с линией подачи исходного газа после регулирующего клапана перед входным сепаратором, подпиточную емкость, выход которой соединен через линию подачи метанола с линией насыщенного газа регенерации между первым рекуперативным теплообменником и пропановым холодильником, и блок регенерации метанола, вход которого соединен с линией отвода водометанольной смеси из сепаратора высокого давления, а выход соединен через линию подачи регенерированного метанола с линией отвода насыщенного газа регенерации между первым рекуперативным теплообменником и пропановым холодильником, при этом адсорбционная установка подготовки природного газа дополнительно содержит эжектор, вход которого соединен через линию отвода сбросного низконапорного газа дегазации с сепаратором низкого давления и через линию отвода части потока отработанного газа регенерации, на которой установлен дроссель, с сепаратором высокого давления, а выход совмещен с линией отвода газового конденсата из сепаратора высокого давления в общую линию, которая соединена с сепаратором среднего давления, и промежуточный подогреватель, вход которого соединен с линией отвода газового конденсата от сепаратора среднего давления, а выход соединен с линией входа газового конденсата в сепаратор низкого давления.

Схема блока регенерации метанола не приводится, т.к. выбор основного и вспомогательного оборудования может быть индивидуален в каждом конкретном случае в зависимости от состава технической воды. Также, для охлаждения насыщенного газа регенерации, кроме пропанового холодильника, могут использоваться различные виды холодильного оборудования (например аммиачное, воздушное и др.), которое подбирают расчетным и опытным путем на каждом производстве газовой и нефтяной промышленности индивидуально в зависимости от состава, расхода и параметров насыщенного газа регенерации, а также затрат на эксплуатацию.

В виду того, что проблема сжигания сбросного низконапорного газа при стабилизации конденсата на адсорбционных установках, где осушается и отбензинивается природный газ, присущая всем газодобывающим странам, в России является особо актуальной ввиду мирового лидерства по объему добычи и транспорта газа. Это приводит к безвозвратной потере газообразных углеводородных компонентов, которые могут использоваться в качестве топлива, а также ценнейших жидких углеводородов - сырья для газо- и нефтехимии.

Применение процесса утилизации сбросного низконапорного газа дегазации от сепаратора низкого давления на смешение с жидкой фазой сепаратора среднего давления, путем эжектирования частью потока отработанного газа регенерации после дросселяции, позволит вовлечь в переработку сбросной низконапорный газ дегазации и часть отработанного газа регенерации, с целью дополнительного получения топливного газа и газового конденсата. Тем самым добиться эффективной утилизации газа, сбрасываемого на факел, что в целом снизит отходы производства и обеспечит ресурсосбережение.

Совместная подача через эжектор части потока отработанного газа регенерации после дросселирования со сбросным низконапорным газом дегазации от сепаратора низкого давления на смешение с жидкой фазой сепаратора среднего давления позволит дополнительно разделить и выделить из смеси газообразные и жидкие углеводороды. При массотеплообмене, благодаря смещению равновесия между фазами, происходит дополнительное выделение из жидкой фазы легких газообразных углеводородов и поглощение тяжелых компонентов жидкими углеводородами в сепараторе среднего давления. В итоге увеличивается количество газа дегазации и газового конденсата. При этом из сепаратора среднего давления отводится газ дегазации промышленного назначения, который по физико-химическим свойствам соответствует требованиям ГОСТ 5542-2014 и может использоваться в качестве топлива, и газовый конденсат, который через установленный промежуточный подогреватель подается на окончательную стабилизацию в сепаратор низкого давления. Промежуточный подогреватель обеспечит получение стабильного газового конденсата согласно ГОСТ Ρ 54389-2011 «Конденсат газовый стабильный».

Установленный промежуточный подогреватель, на линии отвода газового конденсата от сепаратора среднего давления в сепаратор низкого давления, позволит окончательно стабилизировать газовый конденсат, полученный при ступенчатой сепарации и смешении потока эжектируемого газа, путем отгонки легких углеводородов при подогреве газового конденсата. Промежуточный подогрев обеспечит достаточное отделение легких углеводородов (С1…С4), для получении стабильного конденсата с давлением насыщенных паров не более 500-700 мм рт.ст при 38°С по ГОСТ Ρ 54389-2011 «Конденсат газовый стабильный». В сепараторе низкого давления доля отгона газообразных компонентов (С1…С4), которые отводятся путем эжектирования частью потока отработанного газа регенерации на смешение с газовым конденсатом, будет контролироваться заданной температурой после промежуточного подогревателя. Промежуточный подогрев позволит отделить легкие углеводороды (С1…С4) и выделить газовый конденсат без ограничений при ступенчатой сепарации, что увеличит выход стабильного конденсата и выработку топливного газа.

Таким образом, совокупность предлагаемых признаков позволит обеспечить экологизацию и ресурсосбережение вследствие дополнительной выработки продукции, при утилизации сбросного низконапорного газа дегазации и ступенчатой сепарации с промежуточным подогревом газового конденсата.

Оптимальный режим работы адсорбционной установки подготовки природного газа при утилизации низконапорных газов и ступенчатой сепарации с промежуточным подогревом газового конденсата подбирают расчетным и опытным путем на каждом производстве газовой и нефтяной промышленности индивидуально в зависимости от состава, расхода и параметров исходного углеводородного газа, а также затрат на эксплуатацию.

На чертеже представлена принципиальная технологическая схема адсорбционной установки подготовки природного газа.

Адсорбционная установка подготовки природного газа содержит регулирующий клапан 1, входной сепаратор 2, соединенный с адсорберами 3-6 через первый рекуперативный теплообменник 7. Верх адсорберов 3-6 соединен с линией подачи исходного газа I, линией подачи газа охлаждения II и линией отвода насыщенного газа регенерации III, а низ - с линией отвода подготовленного газа IV, линией отвода газа охлаждения V, и линией подачи газа регенерации VI. Адсорберы 3-6 работают периодически: два адсорбера работают параллельно в цикле адсорбции, один находится в цикле регенерации, один - в цикле охлаждения. Линия подачи исходного газа I через регулирующий клапан 1 последовательно соединена с входным сепаратором 2, первым рекуперативным теплообменником 7 и с верхом адсорберов 3-6. Линия подачи газа охлаждения II соединена с верхом адсорберов 3-6 через фильтр-сепаратор 8. Линия отвода подготовленного газа IV из адсорберов 3-6 соединена с фильтрующим устройством 9. Линия отвода газа охлаждения V из адсорберов 3-6 последовательно соединена с фильтрующим устройством 10, вторым рекуперативным теплообменником 11 и печью 12, выход которой через линию подачи газа регенерации VI соединен с низом адсорберов 3-6. Линия отвода насыщенного газа регенерации III из адсорберов 3-6 последовательно соединена с фильтрующим устройством 13, вторым рекуперативным теплообменником 11, первым рекуперативным теплообменником 7, пропановым холодильником 14 и сепаратором высокого давления 15. Линия отвода отработанного газа регенерации VII из сепаратора высокого давления 15 соединена с линией подачи исходного газа I после регулирующего клапана 1 перед входным сепаратором 2, а линия VII (А) части потока отработанного газа регенерации соединена с входом эжектора 16 через дроссель 17. Линия отвода газового конденсата VIII из сепаратора высокого давления 15 после дросселя 18 совмещена с линией эжектируемого газового потока IX в общую линию, которая соединена с сепаратором среднего давления 19, линия дегазации газа которого X соединена с топливной сетью, а линия отвода газового конденсата XI через дроссель 20 соединена последовательно с подогревателем 21 и сепаратором низкого давления 22, у которого линия отвода стабильного конденсата XII соединена с резервуарным парком стабильного конденсата, а линии выхода сбросного низконапорного газа дегазации XIII и ХШ(А) соответственно соединены с входом в эжектор 16 и факельной линией.

Линия подачи метанола XIV из подпиточной емкости 23 соединена с линией отвода насыщенного газа регенерации III между первым рекуперативным теплообменником 7 и пропановым холодильником 14.

Линия отвода технической воды XV, содержащая метанол, из сепаратора высокого давления 15 соединена с блоком регенерации метанола 24, а линия отвода регенерированного метанола XVI из блока регенерации метанола 24 соединена с потоком насыщенного газа регенерации по линии отвода насыщенного газа регенерации III между пропановым холодильником 14 и первым рекуперативным теплообменником 7. Также линия отвода технической воды XVII из блока регенерации метанола 24 и линия отвода технической воды XVIII из сепаратора высокого давления 15 соединены с дренажем.

Все трубопроводы снабжены запорно-регулирующей арматурой.

Установка работает согласно примера: исходный газ с давлением 63 атм. и температурой 20°С в количестве 1900000 нм3/ч и с плотностью 0,699 кг/м3 поступает на установку подготовки газа. Предварительно от общего потока исходного газа по линии подачи исходного газа I перед регулирующим клапаном 1 отбирают часть потока в линию подачи газа охлаждения II в количестве 113400 кг/ч для проведения процессов регенерации и охлаждения. По линии подачи исходного газа I основной поток газа проходит через регулирующий клапан 1, вследствие чего давление исходного потока газа снижается до давления 61 атм., объединяется с отработанным газом регенерации из линии отвода отработанного газа регенерации IX, выходящим из сепаратора высокого давления 11 и поступает во входной сепаратор 2, позволяющий более полно удалить из потока газа капельную жидкость. Далее газ по линии подачи исходного газа I проходит первый рекуперативный теплообменник 7 и поступает на адсорбционную осушку, которая проводится по четырехадсорберной схеме в адсорберах 3-6 (количество адсорберов зависит от номинального расхода исходного газа). При работе установки два адсорбера 3, 4 работают параллельно в цикле адсорбции, адсорбер 6 находится в цикле регенерации, а адсорбер 5 - в цикле охлаждения. Исходный газ по линии подачи исходного газа I проходит сверху вниз через адсорберы 3, 4, где осушается до температуры точки росы по воде от минус 5°С до минус 60°С и по углеводородам от 0°С до минус 50°С. Подготовленный газ по линии отвода подготовленного газа IV из адсорберов 3,4 поступает в фильтрующее устройство 9, где происходит улавливание унесенной потоком газа пыли адсорбента и затем поступает в магистральный газопровод. После завершения цикла адсорбции адсорберы 3, 4 переводят в цикл регенерации и далее - охлаждения.

В качестве газа регенерации и охлаждения используется часть потока исходного газа из линии подачи исходного газа I, отбираемого перед регулирующим клапаном 1. Газ охлаждения по линии подачи газа охлаждения II с расходом 113400 кг/ч проходит фильтр-сепаратор 8 и поступает в адсорбер 5 сверху вниз. После адсорбера 5 газовый поток через линию отвода газа охлаждения V проходит через фильтрующее устройство 13, второй рекуперативный теплообменник 11, где происходит нагрев потоком газа проходящим через линию отвода насыщенного газа регенерации III, и направляется в печь 12. Нагретый до температуры 260°С (температурный режим печи зависит от вида адсорбента и избыточного давления режима регенерации) газ по линии подачи газа регенерации VI поступает снизу-вверх в адсорбер 6 на регенерацию адсорбента.

Насыщенный газ регенерации по линии отвода насыщенного газа регенерации III после адсорбера 6 последовательно проходит фильтрующее устройство 13, второй и первый рекуперативный теплообменники 11 и 7. Во время работы установки, перед тем как снижать температуру насыщенного газа регенерации в пропановом холодильнике 14, проводят аналитический контроль содержания воды в насыщенном газе регенерации для определения температуры гидратообразования. Например, при содержании в насыщенном газе регенерации 0,87% масс, воды, что соответствует расходу 990,9 кг/ч воды при расходе газа регенерации 113400 кг/ч, температура гидратообразования насыщенного газа регенерации составляет 11°С. Выработка стабильного конденсата при температуре 11°С насыщенного газа регенерации составляет 8650 кг/ч, а количество топливного газа - 1505 кг/ч.

При снижении температуры насыщенного газа регенерации до 5°С, в поток насыщенного газа регенерации подают ингибитор гидратообразования - метанол, в количестве 180 кг/ч. Метанол предотвратит образование гидратов при температуре насыщенного газа регенерации 5°С. При этом концентрация метанола в технической воде сепаратора высокого давления 15 составит 14% масс. При концентрации метанола в технической воде равной 14% температура замерзания составит минус 10°С, что не приведет к замерзанию технической воды в сепараторе высокого давления.

После подачи концентрированного метанола по линии подачи метанола XIV (первоначально метанол подается из подпиточной емкости 23) в количестве 180 кг/ч в поток насыщенного газа регенерации III между первым рекуперативным теплообменником 7 и пропановым холодильником 14, насыщенный газ регенерации по линии отвода насыщенного газа регенерации III направляют в пропановый холодильник 14 на охлаждение до температуры 5°С, а затем в сепаратор высокого давления 15, где от насыщенного газа регенерации отделяются техническая вода в количестве 1120 кг/ч с содержанием метанола 14% и углеводородный конденсат в количестве 9992 кг/ч.

Отработанный газ регенерации по линии отвода отработанного газа регенерации VII из сепаратора высокого давления 15 с расходом 102288 кг/ч объединяется с основным потоком газа по линии подачи исходного газа I, после регулирующего клапана 1.

Техническая вода по линии отвода технической воды XV из сепаратора высокого давления 15 с содержанием метанола 14% в количестве 180 кг/ч и температурой 5°С поступает в блок регенерации метанола 24, с целью восстановления концентрированного метанола (94% масс.) из технической воды, регенерированный метанол по линии отвода регенерированного метанола XVI из блока регенерации метанола 24 поступает в поток насыщенного газа регенерации по линии отвода насыщенного газа регенерации III между пропановым холодильником 14 и первым рекуперативным теплообменником 7. При этом блок регенерации метанола 24 обеспечивает бесперебойную подачу концентрированного метанола (94 мас.%) в поток насыщенного газа регенерации по линии отвода насыщенного газа регенерации III. Вследствие уноса метанола с отработанным газом регенерации и углеводородным конденсатом, предусмотрена подача свежего концентрированного метанола в поток насыщенного газа регенерации из подпиточной емкости 23. Поток технической воды по линии отвода технической воды XVII (концентрация метанола в технической воде по линии XVII составляет не более 6 мас.%) из блока регенерации метанола 24 отводится в дренаж.

В случае вывода в резерв, ремонт и т.д. блока регенерации метанола 24 техническая вода из сепаратора высокого давления 15 по линии отвода технической воды XVIII отводится в дренаж.

Нестабильный газовый конденсат по линии отвода газового конденсата VIII из сепаратора высокого давления 15 с расходом 9992 кг/ч проходит через дроссель 18, вследствие чего происходит дросселирование потока газового конденсата при давлении 7,3 атм. по линии отвода газового конденсата VIII со снижением температуры до минус 2°С и смешивается с потоком эжектируемого газа IX, который подается от эжектора 16 при утилизации сбросного низконапорного газа дегазации XIII с давлением 1,3 атм. от сепаратора низкого давления 22, путем эжектирования части отработанного газа регенерации VII (А) после дросселя 17 с давлением 20 атм. Эжектируемый поток IX с температурой 17°С и давлением 8 атм. поступает в сепаратор среднего давления 19, где поддерживается давление 7,3 атм. В сепараторе среднего давления 19 происходит за счет снижения давления частичная дегазация газового конденсата и при поступлении эжектируемого потока IX в количестве 1254 кг/ч на смешение с жидкой фазой - дополнительное выделение из жидкой фазы углеводородов в количестве 1060 кг/ч (в большей степени легких газообразных компонентов) и одновременное поглощение углеводородов в количестве 194 кг/ч (в большей степени тяжелых компонентов) жидкими углеводородами. Выделившийся при этом газ дегазации с расходом 1890 кг/ч направляется в топливную сеть установки, а нестабильный газовый конденсат по линии отвода газового конденсата XI из сепаратора среднего давления 19 в количестве 9376 кг/ч проходит через дроссель 20, вследствие чего происходит дросселирование потока газового конденсата по линии отвода газового конденсата XI со снижением температуры до 4°С, и через промежуточный подогреватель 21, где нагревается до температуры 45°С, поступает в сепаратор низкого давления 21, в котором поддерживается давление 1,3 атм. для окончательной дегазации (стабилизации). Выделившийся при этом сбросной низконапорный газ дегазации XIII с расходом 254 кг/ч утилизируется через эжектор 16 в сепаратор среднего давления, а поток стабильного конденсата по линии отвода стабильного конденсата XII из сепаратора низкого давления 21 с расходом 9122 кг/ч подается в резервуарный парк стабильного конденсата на хранение. В случае не работы эжектора 16 (ремонт, аварийная остановка и т.д.) сбросной низконапорный газ дегазации отводится по линии сброса газа на факел XIII (А).

Похожие патенты RU2750696C1

название год авторы номер документа
АДСОРБЦИОННАЯ УСТАНОВКА ПОДГОТОВКИ И ТРАНСПОРТА УГЛЕВОДОРОДНОГО ГАЗА 2021
  • Васюков Денис Александрович
  • Шабля Сергей Геннадьевич
  • Тищенко Ольга Ивановна
  • Вербовой Яков Викторович
  • Кесель Александр Александрович
  • Сыроватка Владимир Антонович
  • Маляренко Владимир Викторович
RU2786012C1
УСТАНОВКА АДСОРБЦИОННОЙ ОСУШКИ И ОТБЕНЗИНИВАНИЯ ПРИРОДНОГО ГАЗА 2022
  • Васюков Денис Александрович
  • Шабля Сергей Геннадьевич
  • Петрук Вячеслав Петрович
  • Торянников Алексей Александрович
  • Тищенко Ольга Ивановна
  • Вербовой Яков Викторович
  • Сыроватка Владимир Антонович
RU2803501C1
АДСОРБЦИОННАЯ УСТАНОВКА ПОДГОТОВКИ И ТРАНСПОРТА ПРИРОДНОГО ГАЗА 2021
  • Васюков Денис Александрович
  • Шабля Сергей Геннадьевич
  • Тищенко Ольга Ивановна
  • Вербовой Яков Викторович
  • Коротков Михаил Анатольевич
  • Сыроватка Владимир Антонович
RU2791272C1
АДСОРБЦИОННАЯ УСТАНОВКА ПОДГОТОВКИ ПРИРОДНОГО ГАЗА К ТРАНСПОРТУ 2020
  • Васюков Денис Александрович
  • Шабля Сергей Геннадьевич
  • Щербаков Александр Владимирович
  • Царан Алексей Алексеевич
  • Фесенко Максим Юрьевич
  • Сапрыкин Владимир Васильевич
  • Сыроватка Владимир Антонович
RU2750699C1
УСТАНОВКА КОМПЛЕКСНОЙ ПОДГОТОВКИ ПРИРОДНОГО ГАЗА 2022
  • Васюков Денис Александрович
  • Шабля Сергей Геннадьевич
  • Торянников Алексей Александрович
  • Тищенко Ольга Ивановна
  • Вербовой Яков Викторович
  • Сыроватка Владимир Антонович
RU2813543C2
УСТАНОВКА КОМПЛЕКСНОЙ ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА 2022
  • Васюков Денис Александрович
  • Шабля Сергей Геннадьевич
  • Петрук Вячеслав Петрович
  • Тищенко Ольга Ивановна
  • Вербовой Яков Викторович
  • Сыроватка Владимир Антонович
RU2813542C2
УСТАНОВКА ДЛЯ ПОДГОТОВКИ УГЛЕВОДОРОДНОГО ГАЗА К ТРАНСПОРТУ 2020
  • Васюков Денис Александрович
  • Шабля Сергей Геннадьевич
  • Торянников Алексей Александрович
  • Сапрыкин Владимир Васильевич
  • Сыроватка Владимир Антонович
RU2769867C1
УСТАНОВКА ДЛЯ ПОДГОТОВКИ ПРИРОДНОГО ГАЗА К ТРАНСПОРТУ 2020
  • Васюков Денис Александрович
  • Шабля Сергей Геннадьевич
  • Торянников Алексей Александрович
  • Сапрыкин Владимир Васильевич
  • Сыроватка Владимир Антонович
RU2766594C1
Установка для подготовки природного газа 2021
  • Сыроватка Владимир Антонович
  • Ясьян Юрий Павлович
  • Шабалина Светлана Григорьевна
  • Литвинова Татьяна Андреевна
  • Сыроватка Александра Владимировна
RU2765821C1
Установка для подготовки углеводородного газа 2021
  • Сыроватка Владимир Антонович
  • Ясьян Юрий Павлович
  • Сыроватка Александра Владимировна
  • Кесель Александр Александрович
  • Голубева Ирина Александровна
RU2762392C1

Иллюстрации к изобретению RU 2 750 696 C1

Реферат патента 2021 года АДСОРБЦИОННАЯ УСТАНОВКА ПОДГОТОВКИ ПРИРОДНОГО ГАЗА

Изобретение относится к газовой промышленности. Описана адсорбционная установка подготовки природного газа, включающая регулирующий клапан, сепараторы, адсорберы, регенератор, рекуперативный теплообменник, фильтрующие устройства, нагреватели, печь, пропановый холодильник, дроссель, эжектор. Технический результат - обеспечение возможности экологизации и ресурсосбережения установки за счет выработки дополнительного количества топливного газа и стабильного углеводородного конденсата. 1 пр., 1 ил.

Формула изобретения RU 2 750 696 C1

Адсорбционная установка подготовки природного газа, включающая регулирующий клапан, входной сепаратор, адсорберы, верх которых соединен с линией подачи исходного газа, линией подачи газа охлаждения и линией отвода насыщенного газа регенерации, а низ соединен с линией отвода подготовленного газа, линией отвода газа охлаждения и линией подачи газа регенерации, при этом линия подачи исходного газа проходит через регулирующий клапан и соединена со входным сепаратором, выход газа из входного сепаратора соединен с первым рекуперативным теплообменником, выход газа из которого соединен с верхом адсорберов, линия отвода подготовленного газа соединена с первым фильтрующим устройством, при этом линия подачи газа охлаждения соединена с линией подачи исходного газа перед регулирующим клапаном и соединена с фильтром-сепаратором, выход газа из которого соединен с верхом адсорберов, а линия отвода газа охлаждения последовательно соединена со вторым фильтрующим устройством, вторым рекуперативным теплообменником и первой печью, линия подачи газа регенерации соединена с низом адсорберов, а линия отвода насыщенного газа регенерации последовательно соединена с третьим фильтрующим устройством, вторым рекуперативным теплообменником, первым рекуперативным теплообменником, пропановым холодильником и сепаратором высокого давления, при этом линия отвода газового конденсата из сепаратора высокого давления через дроссель соединена с сепаратором среднего давления, в котором линия отвода газового конденсата через дроссель соединена с сепаратором низкого давления, выход из которого соединен с линией отвода стабильного конденсата, при этом линия отвода газа дегазации с сепаратора среднего давления соединена с линией топливного газа, и линия отвода сбросного низконапорного газа дегазации от сепаратора низкого давления соединена с факельной линией, а линия отвода отработанного газа регенерации из сепаратора высокого давления соединена с линией подачи исходного газа после регулирующего клапана перед входным сепаратором, подпиточную емкость, выход которой соединен через линию подачи метанола с линией насыщенного газа регенерации между первым рекуперативным теплообменником и пропановым холодильником, и блок регенерации метанола, вход которого соединен с линией отвода водометанольной смеси из сепаратора высокого давления, а выход соединен через линию подачи регенерированного метанола с линией отвода насыщенного газа регенерации между первым рекуперативным теплообменником и пропановым холодильником, отличающаяся тем, что дополнительно содержит эжектор, вход которого соединен через линию отвода сбросного низконапорного газа дегазации с сепаратором низкого давления и через линию отвода части потока отработанного газа регенерации, на которой установлен дроссель, с сепаратором высокого давления, а выход совмещен с линией отвода газового конденсата из сепаратора высокого давления в обитую линию, которая соединена с сепаратором среднего давления, и промежуточный подогреватель, вход которого соединен с линией отвода газового конденсата от сепаратора среднего давления, а выход соединен с линией входа газового конденсата в сепаратор низкого давления.

Документы, цитированные в отчете о поиске Патент 2021 года RU2750696C1

Установка подготовки газа 2017
  • Сыроватка Владимир Антонович
  • Холод Владимир Владимирович
  • Ясьян Юрий Павлович
RU2653023C1
СПОСОБ РЕГЕНЕРАЦИИ АДСОРБЕНТА ПРОЦЕССА ОСУШКИ И ОЧИСТКИ УГЛЕВОДОРОДНОГО ГАЗА (ВАРИАНТЫ) И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Аджиев Али Юсупович
  • Аксенов Илья Эдуардович
  • Овчаренко Лариса Сергеевна
  • Черникова Светлана Константиновна
  • Ткаченко Иван Григорьевич
RU2637242C1
Установка подготовки газа к транспорту 2019
  • Сыроватка Владимир Антонович
  • Ясьян Юрий Павлович
  • Колесников Александр Григорьевич
  • Холод Владимир Владимирович
  • Сыроватка Александра Владимировна
RU2714807C1
CN 0109929638 A, 25.06.2019
CN 109957429 A, 02.07.2019
CN 206604327 U, 03.11.2017.

RU 2 750 696 C1

Авторы

Васюков Денис Александрович

Шабля Сергей Геннадьевич

Щербаков Александр Владимирович

Царан Алексей Алексеевич

Фесенко Максим Юрьевич

Сапрыкин Владимир Васильевич

Сыроватка Владимир Антонович

Даты

2021-07-01Публикация

2020-06-26Подача