Изобретение относится к области энергетики, в частности к предотвращению гидратообразования в природном газе перед его редуцированием, например, при испытаниях природного газа, поступающего с промысловых установок подготовки, подземных хранилищ газа и газоперерабатывающих заводов в магистральные газопроводы, транспортируемого по ним, поставляемого в качестве компримированного газомоторного топлива, а именно к способам обогреваемого редуцирования газа при его подаче в анализатор.
Влажность природного газа является важной характеристикой, которая определяет качество и стоимость продукта, условия его хранения и транспортировки. Показателем влажности является температура точки росы (ТТР). В настоящее время измерение температуры точки росы проводят при давлении в точке отбора пробы по методикам ГОСТ 20060-83 и ГОСТ Р 53763-2009 с последующим пересчетом на абсолютное давление. С 2022 года Технические условия на магистральный природный газ (Технический регламент ЕАЭС 046-2018) нормируют значение температуры точки росы по воде (ТТРв) при абсолютном давлении 3,92 МПа, температуру точки росы по углеводородам (ТТРув) при абсолютном давлении от 2,5 МПа до 7,5 МПа. На компримированный природный газ (ГОСТ 27577-202_проект, RU, первая редакция) значение ТТРв нормируется при абсолютном давлении 7,5 МПа. Разработана и принята в окончательном чтении новая редакция ГОСТ 20060, где регламентировано редуцирование газа, но отсутствует алгоритм пересчета ТТРв и ТТРув при абсолютном давлении. Это значит, что измерения необходимо проводить после редуцирования газа до нормированного давления.
При редуцировании газ охлаждается за счет эффекта Джоуля-Томсона на входе в редуктор в результате падения давления. Снижение давления на каждые 0,1 МПа понижает температуру газа примерно на 0,5°С, что приводит к преждевременной конденсации водяных паров из газа. Конденсация не позволяет проводить измерения ТТРв и ТТРув природного газа. Обогрев природного газа при редуцировании позволит ТТРв и ТТРув природного газа. Обогрев природного газа при редуцировании позволит предотвратить образование жидких и твердых фаз в природном газе при его редуцировании и определить ТТРв и ТТРув природного газа в случае, когда давление исследуемого газа при измерении необходимо установить ниже его давления в точке отбора пробы. Поэтому, создание способа обогрева природного газа при редуцировании и устройства для его осуществления становится актуальной технической проблемой.
Известен способ предотвращения гидратообразования в природном газе и устройство для его осуществления (Патент РФ №2251644, опубл. 10.05.2005 г.).
Сущность изобретения заключается в обогреве газа в кожухотрубном теплообменнике с непосредственным огневым подогревом. Экономию тепла на подогрев осуществляют за счет уменьшения перепада давления на регуляторе давления, установленном на выходе из теплообменника, посредством увеличения затрат потенциальной энергии давления газа при его движении в нагреваемых каналах теплообменника за счет перераспределения расхода нагреваемого газа по отдельным теплообменным трубам пропорционально теплонапряженности их стенок, с учетом величины располагаемого давления газа на входе в теплообменник.
Недостатками этого способа являются: высокая опасность его применения и снижение давления при дросселировании газа внутри трубных пучков подогревателя, что не поддается точному контролю и регулировке без изменения геометрии трубного пространства.
Известен низковольтный электрический нагреватель природного газа прямого действия (Патент РФ №118034 U1, опубл. 10.07.12.).
Недостатками полезной модели являются: невозможность эксплуатации в месте подключения к пробоотборной линии трубопровода без подвода взрывозащищенного электропитания; отсутствие обогрева редуцирующего элемента и участка газовой линии после редуцирования; отсутствие обогрева самого редуктора; необходимость выхода газа свечой с горящим пламенем; трубки выполнены из металла высокого электрического сопротивления; необходимость наличия источника электрического тока низкого напряжения.
Известен способ обогрева регуляторов давления Авторское свидетельство СССР №217832, опубл. 07.05.1968 г., взятый нами за прототип. Сущность способа заключается в том, что с целью предупреждения гидратообразования и промерзания трущихся поверхностей, а также предотвращения образования холодных зон на подвижных частях регулятора давления, производится самообогрев редуктора путем разделения потока газа при вихревом потоке внутри него на «горячий» и «холодный» за счет энергии перепада давления при редуцировании газа в самом редукторе. «Холодный» газ отводится в общий газопровод без контакта с трущимися поверхностями и окнами редуцирования.
Недостатком указанного способа является высокая сложность его осуществления.
Известен блок редуцирования «Model-001» производства ООО «НПО «Вымпел» (г. Дедовск, Московская обл.) «ВМПЛ2.848.005 ПС», руководство по эксплуатации «ВМПЛ2.848.005 РЭ», взятый нами за прототип. Блок редуцирования с электрическим обогревом предназначен для редуцирования пробы газа с давления в точке отбора пробы до давления в диапазоне от 0,03 до 3,5 МПа, содержит редуктор, манометр и входной теплообменник.
Недостатком блока редуцирования «Model-001» является невозможность его эксплуатации в месте подключения к пробоотборной линии трубопровода без подвода взрывозащищенного электропитания 220 В.
Техническая проблема, решаемая предлагаемым изобретением - создание простого в осуществлении, взрывобезопасного способа и устройства обогрева природного газа при редуцировании перед его подачей в анализатор, на месте подключения к пробоотборной линии газопровода.
Технический результат от использования изобретения заключается в упрощении осуществления, повышении взрывобезопасности способа обогрева природного газа при редуцировании, осуществляемом на месте подключения к пробоотборной линии газопровода перед его подачей в анализатор.
Указанный технический результат достигается тем, что в способе обогрева природного газа при редуцировании, включающем подогрев газа на входе в редуктор, подогревают редуктор и природного газа на выходе из него теплом проводимой в реакторе устройства экзотермической химической реакции порошковой смеси железа, магния и соли поваренной с водой, непосредственно на месте подключения к пробоотборной линии газопровода.
Указанный технический результат достигается также тем, что устройство для обогрева природного газа при редуцировании, включающее редуктор, манометр, входной теплообменники, выходной теплообменник, реактор с крышкой, на котором с одной стороны закреплена одна теплопроводная панель, к которой прикреплен редуктор, с другой стороны закреплена вторая теплопроводная панель, к которой прикреплен манометр, при этом входной и выходной теплообменники установлены внутри реактора.
Реализация способа.
Предлагаемое изобретение иллюстрируется ниже следующими примерами и фиг.
На фиг. 1 изображено устройство в сборе (вид сбоку без выходного штуцера, выходного теплообменника, тройника и вентиля), фиг. 2 - устройство в сборе (фронтальный вид без входного штуцера, входного теплообменника, редуктора, манометра, термометра).
Устройство (фиг. 1, 2) состоит из реактора (1), выполненного из металла с высокими теплопроводящими свойствами, например, меди, который закрывается крышкой (2), например, из нержавеющей стали. Крышка (2) крепится к реактору (1) болтами. Для герметичности соединения крышки (2) с реактором (1) используется кольцевое уплотнение (3), например из фторопласта.
Верхняя часть крышки (2) снабжена тремя штуцерами, проходящими сквозь крышку (2). Центральный штуцер (4) имеет резьбовое соединение с крышкой (2), входной штуцер (5) и выходной штуцер (6).
Входной штуцер (5) соединен сварным соединением со входным теплообменником (7), расположенным внутри реактора (1). С другой стороны входной теплообменник (7) соединен сварным соединением с трубкой (8), проходящей сквозь крышку (2) и крепящейся к ней с помощью сварки. Трубка (8) соединяет входной теплообменник (7) со входом в редуктор (9) посредством резьбового соединения.
Редуктор (9) жестко крепится винтами на теплопроводной панели (10), закрепленной винтами к внешней поверхности стенки реактора (1).
Трубка (11) проходит сквозь крышку (2) и крепится к ней с помощью сварки. Трубка (11) с одной стороны соединена резьбовым соединением с выходом редуктора (9), а с другой приварена к выходному теплообменнику (12), расположенному внутри реактора (1). Выходной теплообменник (12) заканчивается выходным штуцером (6), с которым соединен сварным соединением.
Выходной штуцер (6) соединен с тройником (13), один выход которого соединен с анализатором температуры точки росы, например, «Hygrovision», а другой выход соединен с вентилем (14). Вентиль (14) соединен с манометром (15) через трубку (16). Все соединения от штуцера (6) до манометра (15) резьбовые. Манометр (15) крепится хомутами к теплопроводной панели (17), закрепленной винтами к внешней поверхности стенки реактора (1), противоположной от стенки с редуктором (9). В реактор (1) помещен биметаллический контактный термометр (18).
Способ осуществляют следующим образом.
Перед выездом на место проведения измерений в медный реактор (1) устройства помещают от 20 г до 40 г порошковой смеси железа 34%, магния 34%, соли поваренной 32%.
Реактор (1) закрывают крышкой (2) и устройство в собранном виде транспортируют к месту проведения измерений.
Входной штуцер (5) устройства соединяют с источником газа гибким металлорукавом высокого давления (не входит в состав патентуемого устройства). Тройник (13) выходного штуцера (6), который служит для подключения линии подачи пробы в анализатор, соединяют с входным штуцером (6) расположенного рядом анализатора точки росы «Hygrovision». На вход устройства подают давление газа, равное давлению в газопроводе. Редуктором (9) устанавливают избыточное давление газа на выходе из устройства на 0,1 МПа меньше требуемого абсолютного давления. Давление контролируют по показаниям манометра (15), для отключения которого предусмотрен вентиль (14). В реактор (1) заливают от 100 до 200 мл воды, начинается экзотермическая химическая реакция, сообщающая тепло природному газу через теплообменники (7) и (12) и редуктор (9). Отвод газообразных продуктов реакции, которые в небольшом количестве образуются в процессе работы, осуществляется через центральный штуцер (4). Реактор (1) за время от 15 минут до 30 минут разогревается до температуры от 35°С до 70°С в зависимости от количества засыпанной реакционной смеси и температуры окружающей среды. Температура внутри реактора (1) контролируется с помощью биметаллического контактного термометра (18) с диапазоном шкалы не уже, чем от 0°С до 80°С. Газ, подогретый в расположенном внутри реактора (1) входном теплообменнике (7), поступает в редуктор (9). Редуктор (9), закрепленный на теплопроводящей панели (10), сам обогревается теплом протекающей в реакторе (1) экзотермической химической реакции благодаря высокой теплопроводности материала стенки реактора (1) и теплопроводящей панели (10). От редуктора (9) газ по трубке (11) поступает в выходной теплообменник (12), расположенный в реакторе (1) над входным теплообменником (7), где дополнительно подогревается перед подачей в анализатор, например, «Hygrovision». Подогрев газа на выходе из редуктора (9) передает газу дополнительное количество теплоты, в результате чего газ поступает в анализатор с температурой не ниже, чем температура источника.
Пример 1.
На импульсной линии охранного неэлектрифицированного крана водного перехода магистрального газопровода, давление в котором 6,8 МПа, температура газа 4,2°С, после перехода через водную преграду в районе с умеренным климатом и температурой атмосферного воздуха 12°С, необходимо установить соответствие транспортируемого газа СТО Газпром 089-2010 «Газ горючий природный поставляемый и транспортируемый по магистральным газопроводам. Технические условия» по показателю «Температура точки росы по воде при абсолютном давлении 3,92 МПа». Норматив для районов с умеренным климатом - «не выше минус 10°С».
Перед выездом на место проведения измерений в медный реактор (1) устройства помещают 30 г порошковой смеси железа, магния и соли поваренной, например, «Беспламенный нагреватель пищи» производства ООО НТК «СОТА», реактор (1) закрывают крышкой (2), верхняя часть которой снабжена тремя штуцерами (4, 5, 6), кольцевым уплотнением (3) и крепится к реактору (1) болтами. Устройство в собранном виде транспортируют к месту проведения измерений. Входной штуцер (5) устройства соединяют с импульсной линией охранного крана гибким металлорукавом высокого давления. Тройник (13) выходного штуцера (6) соединяется с входным штуцером расположенного рядом анализатора точки росы «Hygrovision-BL». На вход устройства подают давление газа, равное давлению в точке отбора (6,8 МПа). Редуктором (9) устанавливают избыточное давление газа на выходе из устройства 3,82 МПа при условии, что через подключенный к устройству анализатор «Hygrovision-BL» имеет место проток анализируемого газа со скоростью на выходе 1 л/мин. Давление снижается на 2,98 МПа, газ охлаждается с 4,2°С до минус 10,7°С. В реактор (1) заливают 170 мл воды, начинается экзотермическая химическая реакция, в результате которой реактор (1) в течении 16 минут разогревается до 50°С, а температура газа на выходе из устройства в течении последующих 60 минут находится в пределах от 5°С до 8°С. Проводят два последовательных измерения ТТРв визуальным конденсационным методом по ГОСТ Р 53763-2009. Два последовательных результата измерений, полученных с использованием анализатора точки росы «Hygrovision-BL» при абсолютном давлении 3,92 МПа, составили минус 8,4°С и минус 8,2°С. За окончательный результат принимается среднее арифметическое значение, равное минус 8,3°С. Сравнивают полученное значение ТТРв (минус 8,3°С) с предельным значением ТТРв (минус 10°С) при абсолютном давлении 3,92 МПа. Полученное значение выше предельного на 2°С, то есть качество газа в магистральном газопроводе после перехода через водную преграду не соответствует СТО Газпром 089-2010 по показателю «Температура точки росы по воде при абсолютном давлении 3,92 МПа».
Пример 2.
На узле подключения компрессорной станции (КС) с давлением во входном шлейфе газопровода 5,5 МПа, температурой газа 3,4°С, в районе с умеренным климатом и температурой атмосферного воздуха минус 8°С, необходимо установить соответствие транспортируемого газа СТО Газпром 089-2010 «Газ горючий природный поставляемый и транспортируемый по магистральным газопроводам. Технические условия» по показателю «Температура точки росы по воде при абсолютном давлении 3,92 МПа». Норматив для районов с умеренным климатом - «не выше минус 10°С».
Перед выходом на место проведения измерений в медный реактор (1) устройства помещают 20 г порошковой смеси железа, магния и соли поваренной, например, «Беспламенный нагреватель пищи» производства ООО НТК «СОТА», реактор (1) закрывают крышкой (2) и в собранном виде транспортируют к месту проведения измерений. Входной штуцер (5) устройства соединяют с импульсной линией крана выходного шлейфа КС гибким металлорукавом высокого давления. Тройник (13) выходного штуцера (6) соединяется с входным штуцером расположенного рядом анализатора точки росы «Hygrovision-mini». На вход устройства подают давление газа, равное давлению во входном шлейфе газопровода (5,5 МПа). Редуктором (9) устанавливают избыточное давление газа на выходе из устройства 3,82 МПа при условии, что через подключенный к устройству анализатор «Hygrovision-mini» имеет место проток анализируемого газа со скоростью на выходе 1 л/мин. Давление снижается на 1,68 МПа. Под влиянием эффекта Джоуля-Томсона и отрицательной температуры окружающей среды газ охлаждается с 3,4°С до минус 7,8°С. В реактор (1) заливают 200 мл воды, начинается экзотермическая химическая реакция, в результате которой реактор (1) в течении 25 минут разогревается до 35°С, а температура газа на выходе из устройства в течении последующих 40 минут находится в пределах от 4°С до 7°С. Проводят два последовательных измерения ТТРв визуальным конденсационным методом по ГОСТ Р 53763-2009. Два последовательных результата измерений, полученных с использованием анализатора точки росы «Hygrovision-BL» при абсолютном давлении 3,92 МПа, составили минус 18,2°С и минус 18,8°С. За окончательный результат принимается среднее арифметическое значение, равное минус 18,5°С. Сравнивают полученное значение ТТРв (минус 18,5°С) с предельным значением ТТРв (минус 10°С) при абсолютном давлении 3,92 МПа. Полученное значение ниже предельного на 8,5°С, то есть качество газа на входе в компрессорную станцию соответствует СТО Газпром 089-2010 по показателю «Температура точки росы по воде при абсолютном давлении 3,92 МПа».
Пример 3.
На импульсной линии линейного неэлектрифицированного крана магистрального газопровода с давлением 8,0 МПа и температурой газа 6,0°С, в районе с умеренным климатом и температурой атмосферного воздуха 24°С, необходимо установить соответствие транспортируемого газа СТО Газпром 089-2010 «Газ горючий природный поставляемый и транспортируемый по магистральным газопроводам. Технические условия» по показателю «Температура точки росы по углеводородам при абсолютном давлении 2,5 МПа». Норматив для районов с умеренным климатом - «не выше минус 2°С».
Перед выходом на место проведения измерений в медный реактор (1) устройства помещают 30 г порошковой смеси железа, магния и соли поваренной, например, «Беспламенный нагреватель пищи» производства ООО НТК «СОТА», реактор (1) закрывают крышкой (2) и в собранном виде транспортируют к месту проведения измерений. Входной штуцер (5) устройства соединяют с импульсной линией крана выходного шлейфа КС гибким металлорукавом высокого давления. Тройник (13) выходного штуцера (6) соединяется с входным штуцером расположенного рядом анализатора точки росы «Hygrovision-BL». На вход устройства подают давление газа, равное давлению в газопроводе (8,0 МПа). Редуктором (9) устанавливают избыточное давление газа на выходе из устройства 2,4 МПа при условии, что через подключенный к устройству анализатор «Hygrovision-BL» имеет место проток анализируемого газа со скоростью на выходе 1 л/мин. Давление снижается на 5,6 МПа. Под влиянием эффекта Джоуля-Томсона газ охлаждается с 6°С до минус 22°С. В реактор (1) заливают 160 мл воды, начинается экзотермическая химическая реакция, в результате которой реактор (1) в течении 15 минут разогревается до 55°С, а температура газа на выходе из устройства в течении последующих 60 минут находится в пределах от 7 до 9°С. Проводят два последовательных измерения ТТРув визуальным конденсационным методом по ГОСТ Р 53762-2009. Два последовательных результата измерений, полученных с использованием анализатора точки росы «Hygrovision-BL» при абсолютном давлении 2,5 МПа, составили минус 14,3°С и минус 15,1°С. За окончательный результат принимается среднее арифметическое значение, равное минус 14,7°С. Сравнивают полученное значение ТТРув (минус 14,7°С) с предельным значением ТТРув (минус 2°С) при абсолютном давлении 2,5 МПа. Полученное значение ниже предельного на 12,7°С, то есть качество газа соответствует СТО Газпром 089-2010 по показателю «Температура точки росы по углеводородам при абсолютном давлении 2,5 МПа».
Пример 4.
На выходе из аккумулятора автомобильной газонаполнительной компрессорной станции (АГНКС), расположенной в климатическом районе II6, газ имеет давление 25 МПа и температуру 45°С, температура атмосферного воздуха 22°С (летний период). Необходимо установить температуру точки росы по воде при абсолютном давлении 7,5 МПа.
Перед выходом на место проведения измерений в медный реактор (1) устройства помещают 40 г порошковой смеси железа, магния и соли поваренной, например, «Беспламенный нагреватель пищи» производства ООО НТК «СОТА», реактор (1) закрывают крышкой (2) и в собранном виде транспортируют к месту проведения измерений. На аккумуляторной установке АГНКС демонтируется манометр, и манометрический штуцер с помощью гибкого металлорукава высокого давления соединяют с входным штуцером (5) устройства. Тройник (13) выходного штуцера (6) соединяется с входным штуцером расположенного рядом анализатора точки росы «Hygrovision-BL». При закрытом редукторе (9) на вход устройства осторожно подают давление газа, равное давлению в газопроводе АГНКС (25 МПа). Редуктором (9) медленно устанавливают избыточное давление газа на выходе из устройства 7,4 МПа при условии, что через подключенный к устройству анализатор «Hygrovision-BL» имеет место проток анализируемого газа со скоростью на выходе 0,5 л/мин. Давление снижается на 17,5 МПа. Под влиянием эффекта Джоуля-Томсона газ охлаждается с 45°С до минус 42°С. В реактор (1) заливают 100 мл воды, начинается экзотермическая химическая реакция, в результате которой реактор (1) в течении 30 минут разогревается до 70°С, а температура газа на выходе из устройства в течении последующих 60 минут находится в пределах от 1 до 4°С. Проводят два последовательных измерения ТТРв визуальным конденсационным методом. Два последовательных результата измерений, полученных с использованием анализатора точки росы «Hygrovision-BL» при абсолютном давлении 7,5 МПа, составили минус 28,3°С и минус 29,1°С. За окончательный результат принимается среднее арифметическое значение, равное минус 28,7°С, что соответствует нормативу (не выше минус 20°С) для летнего периода в климатическом районе II6.
Промышленная применимость.
Все детали устройства выполнены по чертежам с помощью токарных и фрезерный работ.
Реактор (1) и теплопроводные панели (10, 17) могут быть изготовлены из металла с высокими теплопроводящими свойствами, например, медь по ГОСТ 1535-2006.
Крышка (2) реактора (1), штуцеры (4, 5, 6) верхней части крышки (2), могут быть изготовлены, например, из нержавеющей стали марки 12Х18Н10Т по ГОСТ 5632-2014. Крышка (2) крепится к реактору (1) не менее, чем двумя болтами, например, марки М 6.
Все наружные коммуникации, входной и выходной спиральные теплообменники (7, 12), могут быть выполнены, например, из нержавеющей стали 12Х18Н10Т по ГОСТ 14162-79.
Редуктор (9) должен быть изготовлен из материала, инертного по отношению к компонентам природного газа в соответствии с требованиями ГОСТ 31370-2008. Редуктор (9) должен быть рассчитан на входное давление, превышающее давление в точке отбора пробы.
В диапазон регулировки выходного давления должно входить давление измерения ТТР, регламентированное техническими условиями на тип анализируемого природного газа.
Таким образом, предлагаемое изобретение позволяет осуществить простой в исполнении способ обогрева природного газа при редуцировании перед его подачей в анализатор, за счет отсутствия специального монтажа и подвода электропитания. За счет отсутствия токоведущих частей в устройстве для обогрева, способ является взрывобезопасным. Мобильное исполнение устройства с автономным источником энергии, позволяет осуществить способ непосредственно на месте подключения к пробоотборной линии газопровода.
название | год | авторы | номер документа |
---|---|---|---|
Способ подготовки природного газа месторождений Крайнего Севера | 2020 |
|
RU2762763C1 |
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ТЕПЛООБМЕННИКА | 2021 |
|
RU2773451C1 |
Сепарационная установка для определения потенциального содержания жидких углеводородов в природном газе | 2020 |
|
RU2768128C1 |
Способ работы газораспределительной станции | 2020 |
|
RU2752119C1 |
Способ определения капельного уноса углеводородной жидкости из промысловых установок низкотемпературной сепарации природного газа | 2020 |
|
RU2768130C1 |
Способ осушки технологических трубопроводов компрессорного цеха | 2023 |
|
RU2820376C1 |
СПОСОБ ОСУШКИ ТЕХНОЛОГИЧЕСКИХ ТРУБОПРОВОДОВ КОМПРЕССОРНОГО ЦЕХА | 2022 |
|
RU2809523C1 |
ГАЗОНАПОЛНИТЕЛЬНАЯ СТАНЦИЯ НАУМЕЙКО | 2004 |
|
RU2244205C1 |
СПОСОБ ОЧИСТКИ ГАЗОПРОВОДА ОТ ГИДРАТНЫХ ОТЛОЖЕНИЙ | 2023 |
|
RU2818522C1 |
СПОСОБ СБОРА И УТИЛИЗАЦИИ НИЗКОНАПОРНОГО ГАЗА ПРИ ПРОМЫСЛОВОЙ ПОДГОТОВКЕ ПРИРОДНОГО ГАЗА С НИЗКИМ КОНДЕНСАТНЫМ ФАКТОРОМ | 2015 |
|
RU2612448C2 |
Изобретение относится к области энергетики, в частности к предотвращению гидратообразования в природном газе перед его редуцированием, а именно к способам обогреваемого редуцирования газа при его подаче в анализатор. Предложенный способ обогрева природного газа при редуцировании включает подогрев газа на входе в редуктор, подогрев редуктора и природного газа на выходе из него теплом проводимой в реакторе устройства экзотермической химической реакции порошковой смеси железа, магния и соли поваренной с водой, непосредственно на месте подключения к пробоотборной линии газопровода. В устройстве для подогрева газа при редуцировании входной 7 и выходной 12 теплообменники находятся внутри реактора 1, на внешней стенке реактора 1 закреплен обогреваемый за счет теплового контакта с ней редуктор 9, а также манометр 15. Технический результат заключается в упрощении осуществления, повышении взрывобезопасности способа обогрева природного газа при редуцировании, осуществляемом на месте подключения к пробоотборной линии газопровода перед его подачей в анализатор. 2 н. и 1 з.п. ф-лы, 2 ил.
1. Способ обогрева природного газа при редуцировании, включающий подогрев газа на входе в редуктор, отличающийся тем, что осуществляют подогрев редуктора и природного газа на выходе из него теплом проводимой в реакторе устройства экзотермической химической реакции, непосредственно на месте подключения к пробоотборной линии газопровода.
2. Способ по п. 1, отличающийся тем, что для проведения химической экзотермической реакции используют порошковую смесь железа, магния и соли поваренной с водой.
3. Устройство для обогрева природного газа при редуцировании, включающее редуктор, манометр, входной теплообменник, отличающееся тем, что дополнительно содержит выходной теплообменник, реактор с крышкой, на котором с одной стороны закреплена одна теплопроводная панель, к которой прикреплен редуктор, с другой стороны закреплена вторая теплопроводная панель, к которой прикреплен манометр, при этом входной и выходной теплообменники установлены внутри реактора.
Способ редуцирования давления природного газа | 2018 |
|
RU2713551C1 |
СПОСОБ ПРЕДОТВРАЩЕНИЯ ГИДРАТООБРАЗОВАНИЯ В ПРИРОДНОМ ГАЗЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2251644C2 |
Способ определения фосфатидов в растительных маслах | 1949 |
|
SU77667A1 |
CN 103940087 A, 23.07.2014. |
Авторы
Даты
2021-10-06—Публикация
2021-03-15—Подача