Изобретение относится к металлургическому производству и может быть использовано при подготовке сырья к извлечению свинца из отработанных свинцовых кислотных аккумуляторов, представленных батареями, выполненными из полимерных материалов, с электродными блоками, основу которых составляет компактный свинцово-сурьмяный сплав (до 6% сурьмы) решетчатой конфигурации, заполненный шламовой набивкой, представленной кислородными соединениями свинца (сульфатами, оксидами, диоксидами).
Удельные содержания на 1 ампер-час емкости аккумулятора, кг:
- свинца в сплаве 0,096÷0,08;
- свинца в шламовой набивке 0,075÷0,06;
- полимерных материалов 0,064÷0,05;
- электролита 0,024÷0,026.
Применяемые способы разборки аккумуляторного лома связаны с удалением электролита с последующим механическим разрушением амортизированных изделий с сепарацией, обеспечивающей отделение свинецсодержащих фаз от сопутствующих органических компонентов.
Известен способ разборки аккумуляторного лома (после слива электролита) механическим разрушением корпусов и их содержимого с последующей гравитацией, включающий разделение кусковых полимеров и компактных электродных основ, а также сепарацию в тяжелых средах, дисперсных органических и свинцовых шламовых составляющих. [Способ разделения лома свинцовых аккумуляторов, Патент, RU 2135612, МПК С22В 7/00, 1999 г.].
К недостаткам способа следует отнести:
- неудовлетворительную степень разделения при сепарации крупных ломов;
- низкие показатели разделения свинцовых и полимерных шламов что затрудняет дальнейшее использование полимеров.
Известен способ разделения отработанных аккумуляторов на составные компоненты путем дробления, сушки и пневмосепарации на металлические и неметаллические фракции, отличающийся тем, что, с целью упрощения технологии и повышения чистоты конечных продуктов, сушку и пневмосепарацию осуществляют нагретым до 150-200°С газообразным теплоносителем в течение 4-5 сек. [Патент SU 552650]
Известен способ разделения отработанных свинцовокислотных аккумуляторов [Патент SU 272912] на составные компоненты путем их избирательного дробления ударами числом от 10 до 500, отделения активной массы от остальных материалов просеиванием 30 мм с последующим флотационным отделением неметаллических компонентов от металлических, отличающийся тем, что, с целью упрощения технологии, аккумуляторы при дроблении нагревают до 35-50 С газами, пропускаемыми противотоком по отношению к дробящимся материалам, а флотацию ведут в водной суспензии активной массы с рН раствора в пределах 7 и плотностью пульпы 1,1-2.
К недостатку известных способов можно отнести сепарацию измельченных смесей полимерных материалов и твердых химических соединений свинца, входящих в состав шламов, что как правило, трудоемкий процесс, не обеспечивающий безусловное глубокое разделение материалов.
Из известных не найден способ, близкий, по сути, к заявляемому, так как в предлагаемом способе реализуется последовательное отделения свинецсодержащих шламов из частично разрушенного корпуса и компактного сплава, с получением самостоятельного полимерного продукта.
Целью изобретения является создание способа переработки свинцового аккумуляторного лома, с частичным механическим его разрушением для удобства выделения шламовой составляющей и компактного сплава в самостоятельные продукты с последующим удалением, компактных масс органических материалов, не содержащих свинца.
Поставленная цель достигается тем, что в предложенном способе отрезают дно батареи, находящейся в перевернутом состоянии, сливают электролит и возвращают батарею в эксплуатационное положение с последующим обесшламливанием ее водовоздушной смесью, содержащей NaOH 20-30 г на 1 дм3, сушкой и отрезанием полимерных элементов корпуса и крышки. При этом дно отрезают электротермическим способом, используя при этом нагретую до 750-800°С нихромовую струну диаметром 2 мм, а обесшламливание электродов проводят водовоздушной смесью с последующей сушкой горячим воздухом 140-160°С.
После обрезания стенок и крышки батареи открывается электродный блок, направляемый на плавку. Шлам кислородных соединений свинца в виде водной пульпы выделяют центрифугированием. Его подсушивают и направляют на восстановительную плавку.
Характеристики водовоздушной смеси:
- рабочее давление водного раствора 0,4-0,5 МПа;
- давление всасывания воздуха 15-20 кПа;
- расход воды 5-6 т/час;
- расход воздуха 10-15 кг/час.
Используются типовые эжекторы, (например, ЭВ-3). Предусматривается установка четырех эжекторов на операции нейтрализации кислоты и обесшламливании. Водо-воздушную смесь получают с использованием оборотных щелочных осветленных водных фаз после отстаивания свинецсодержащих пульп.
Водная составляющая водовоздушной смеси - раствор щелочи с концентрацией NaOH 20-30 г на 1 дм3. Такая концентрация необходима для нейтрализации кислоты (H2SO4) в электролите, остающемся в банках батареи после слива электролита, и является оптимальной для получения нейтрального раствора при промывке аккумуляторов различной емкости. Отклонение от указанной концентрации ниже 20 или выше 30 г на 1 дм3 приведет к получению кислых и щелочных растворов, соответственно. Температура нагрева нихромовой струны до 750-800°С обеспечивает максимальную скорость резания. Снижение температуры приведет к налипанию разрезаемого материала на режущую поверхность и уменьшению эффективности процесса резки. Повышение выше 800°С - не приведет к увеличению скорости процесса, но при этом произойдет увеличение расхода энергии. Толщина струны 2 мм обеспечивает получение эффективного разреза, позволяющего легко разделять разрезаемые фрагменты. Увеличение диаметра струны приведет к увеличению энергозатрат на процесс резки.
Обесшламливание осуществляется в соответствии со схемой цепи аппаратов (фиг.) Аккумуляторная батарея (без дна и после нейтрализации кислоты), установленная на тележку перемещается на обесшламливание, включающее герметичную камеру 1, (для исключения разбрызгивания пульпы), внутри которой установлен коллектор с эжекторами 2, сопла которых направлены внутрь корпуса аккумулятора. Расстояние между обрезом сопла и аккумулятором составляет 20-25 мм. Камера имеет коническое днище для слива пульпы, поступающей в отстойник 3, с донным сливом и задвижкой. Сгущенная пульпа из отстойника 3 поступает в центрифугу 4 со сливом фугата в накопительную емкость 5. Из накопителя 5, насосом 5Н раствор перекачивают на верхний горизонт отстойника 3. Из отстойника 3 с помощью насоса 3Н закачивают осветленный раствор для приготовления водовоздушной смеси в эжекторе. Накапливаемый на барабане центрифуги кек выгружают в поддон 6 и направляют на металлургический передел.
Эффективность водо-воздушного обесшламливания подтверждена опытной промывкой содержимого батареи емкостью 90 А-час с использованием эжектора ЭВ-3 с соответствующей напорной водной и воздушной обвязкой. Содержание шлама в электродном блоке после промывки менее 1,5%.
После обесшламливания тележка с аккумулятором поступает в камеру сушки воздушным потоком от калорифера (140-160°С). При этом кроме сушки проходит выплавка диафрагм.
Финишная операция связана с электротермической резкой стенок и крышки батареи и направлением электродного блока в металлургический передел, а полимерных материалов на складирование.
Разборке аккумуляторных батарей предшествует классификация аккумуляторов по емкости. Линия настраивается на соответствующие геометрические размеры амортизированных аккумуляторов.
Аппаратурно транспортная схема установки предусматривает наличие самодвижущихся тележек, на которых установлены батареи, манипуляторов для переворачивания батарей с отрезанием дна и возвращением в эксплуатационное положение.
название | год | авторы | номер документа |
---|---|---|---|
Способ восстановления свинца из кислородных соединений оксисульфатной фракции аккумуляторного лома | 2020 |
|
RU2753670C1 |
Способ восстановления свинца из оксисульфатных шламов аккумуляторных батарей | 2019 |
|
RU2693245C1 |
СПОСОБ ВОССТАНОВЛЕНИЯ СВИНЦА | 2005 |
|
RU2282672C1 |
СПОСОБ ПЕРЕРАБОТКИ СВИНЦОВОГО АККУМУЛЯТОРНОГО ЛОМА | 2000 |
|
RU2164537C1 |
Способ переработки вторичного свинцового сырья | 1982 |
|
SU1006528A1 |
СПОСОБ ПЕРЕРАБОТКИ СЫРЬЯ ОТРАБОТАННЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ | 1997 |
|
RU2146298C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СВИНЦОВОГО АККУМУЛЯТОРНОГО ЛОМА | 2005 |
|
RU2274669C1 |
СВИНЦОВЫЙ АККУМУЛЯТОР | 1997 |
|
RU2132585C1 |
СПОСОБ ПЕРЕРАБОТКИ СВИНЕЦСОДЕРЖАЩИХ ПРОДУКТОВ, ПОЛУЧАЕМЫХ ИЗ ЛОМА ОТРАБОТАННЫХ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ | 2011 |
|
RU2499062C2 |
СПОСОБ КОНДИЦИОНИРОВАНИЯ СВИНЕЦСОДЕРЖАЩЕГО МАТЕРИАЛА ПЕРЕД ПЛАВКОЙ | 1998 |
|
RU2131473C1 |
Изобретение относится к области электротехники и может быть использовано при извлечении свинца из отработанных свинцовых кислотных аккумуляторов, представленных батареями, выполненными из полимерных материалов, с электродными блоками. Повышение эффективности отделения свинецсодержащих фаз от сопутствующих органических компонентов является техническим результатом изобретения. Способ разборки аккумуляторных батареи включает отрезание дна батареи, находящейся в перевернутом состоянии, слив электролита и возвращение батареи в эксплуатационное положение с последующим обесшламливанием ее водовоздушной смесью, содержащей NaOH 20-30 г на 1дм3, сушкой и отрезанием полимерных элементов корпуса и крышки, при этом дно отрезают электротермическим способом, используя нагретую до 750-800°С нихромовую струну диаметром 2 мм, а обесшламливание электродов проводят водовоздушной смесью давлением 0,4-0,5 МПа с последующей сушкой горячим воздухом 140-160°С. 1 ил.
Способ разборки отработанных свинцовых аккумуляторных батарей, включающий отрезание дна батареи, находящейся в перевернутом состоянии, слив электролита и возвращение батареи в эксплуатационное положение с последующим обесшламливанием ее водовоздушной смесью, содержащей NaOH 20-30 г на 1дм3, сушкой и отрезанием полимерных элементов корпуса и крышки, при этом дно отрезают электротермическим способом, используя нагретую до 750-800°С нихромовую струну диаметром 2 мм, а обесшламливание электродов проводят водовоздушной смесью 0,4-0,5 МПа с последующей сушкой горячим воздухом 140-160°С.
СПОСОБ РАЗДЕЛЕНИЯ ОТРАБОТАННЫХ СВИНЦОВО- | 0 |
|
SU272912A1 |
СПОСОБ РАЗДЕЛКИ ЛОМА СВИНЦОВЫХ АККУМУЛЯТОРОВ | 1995 |
|
RU2135612C1 |
US 6177056 B1, 23.01.2001 | |||
CN 105950872 A, 21.09.2016 | |||
JP 2005063876 A, 10.03.2005. |
Авторы
Даты
2022-03-17—Публикация
2021-04-21—Подача