Способ моделирования тромбоза легочной артерии в условиях венозного тромбоза Российский патент 2022 года по МПК G09B23/28 A61B17/00 

Описание патента на изобретение RU2770355C1

Изобретение относится к медицине и может быть использовано для изучения локального тромбообразования в легочной артерии и ее ветвях в условиях тромбоза глубоких вен системы нижней полой вены.

В настоящее время не описаны модели локального тромбоза легочной артерии, в том числе в условиях венозного тромбоза в системе нижней полой вены.

Разработанные способы моделирования тромботических процессов в ветвях легочной артерии основаны на индукции тромбообразования путем эмболии либо тромбоэмболии. В моделях эмболии легочной артерии для индукции в ней тромбоза используют внутривенное введение тромбина/тромбопластина, коллагена с эпинефрином, аденозиндифосфата (АДФ) либо синтетических микросфер. В подобных моделях не могут быть оценены локальные процессы тромбообразования, что делает их непригодными для изучения локального тромбоза легочной артерии [1-6].

Модели венозной тромбоэмболии также не соответствуют поставленной цели, поскольку предполагают экзогенный источник тромбов в легочной артерии, что исключает возможность оценки в ней локальных тромбогенных процессов. В качестве моделей венозной тромбоэмболии используют неокклюзивные модели венозного тромбоза, в основе которых лигирование бедренной вены с последующим снятием лигатуры, электролитная или фотохимическая деструкция интимы бедренной вены, а также повреждение венозной стенки аппликацией бумаги, пропитанной FeCl3. Использование в модели венозного тромбоза бедренной вены позволяет изучать процессы образования эмболов из венозных тромбов в режиме видеомикроскопии в реальном времени [7-14].

Также известны модели «локального тромбоза легочной артерии в условиях тромбоза глубоких вен» требовалась наиболее физиологичная модель венозного тромбоза. К настоящему времени предложено более 20 различных моделей, однако не все они имитируют естественные процессы тромбообразования. Среди них модели с инъекцией препаратов, повреждающих венозную стенку (Этоксисклерол) [15], либо активирующих систему коагуляции (тромбин, тромбопластин) [16-23] модели с введением тромбогенного материала (нити, синтетические тромбогенные протезы) [24-26], с полным выключением из кровотока венозного сегмента (лигирование, эндоваскулярная окклюзия баллонами) [27-28].

К самым распространенным моделям можно отнести следующие: элекролитная модель с повреждением венозной стенки током, модель с нанесением на венозную стенку FeCl3, фотохимическая модель с воздействием лазерного излучения на стенку вены с предварительным введением фотохромов [29-31].

Моделями, которые наиболее соответствуют физиологическим условиям тромбообразования в венозном русле, являются модели стеноза и стаза. Первая предполагает наложение лигатуры на нижнюю полую вену животного с сужением ее просвета до 80-90% с перевязкой или без её ветвей. В модели стаза нижнюю полую вену лигируют полностью до исчезновения её просвета, боковые и задние ветви перевязывают или коагулируют. Замедление кровотока в обоих моделях способствует тромбообразованию практически в 100% случаев [32].

Наиболее близким к заявляемому изобретению является способ моделирования тромбоэмболии легочной артерии у крыс [33] (Способ моделирования тромбоэмболии легочной артерии у крыс: патент RU2610212, Российская Федерация, заявка RU2015155815, заявл. 24.12.2015, опубл. 08.02.2017), в ходе которого перекрывают кровоток в нижней полой вене и для развития тромбоэмболии мелких ветвей легочной артерии на уровне сегментарных артерий окклюзию вены сохраняют в течение 1,5-3,0 часов, а для формирования тромбоэмболии на уровне долевых артерий окклюзию вены сохраняют в течение 3,1-6,0 часов с последующим открытием кровотока. Данный способ принят за прототип.

Недостатком прототипа является отсутствие возможности моделирования тромбоза легочной артерии. Это обусловлено направленностью способа-прототипа на моделирование тромбоэмболии, что подразумевает снятие лигатуры для остановки окклюзии вены в процессе реализации методики. Ни в одной из известных моделей венозного тромбоза нет описания ассоциированных тромботических, но не тромбоэмболических процессов в легочной артерии и ее ветвях. В литературе отсутствует описание моделей локального тромбоза легочной артерии не только в условиях венозного тромбоза, но также в условиях других локальных или системных воспалительных процессов.

Технической проблемой является необходимость разработки эффективного и простого в реализации способа моделирования тромбоза легочной артерии в условиях венозного тромбоза, лишенного вышеприведенных недостатков. Обеспечение возможности моделирования тромбоза легочной артерии при венозном тромбозе позволит определить один из механизмов развития тромботического процесса в легочной артерии, не ассоциированного с механизмом тромбоэмболии из венозного русла. В клинической практике это сделает возможным обоснование отказа от механических средств профилактики тромбоэмболии легочной артерии (кава-фильтр), а также послужит поводом для изучения в клинических и экспериментальных условиях такого явления как тромбоз легочной артерии, отличающегося по ряду провоцирующих факторов, по частоте рецидивов от тромбоза глубоких вен, как изолированного, так и осложненного тромбоза легочной артерии (Porembskaya O, Toropova Y, Tomson V, Lobastov K, Laberko L, Kravchuk V, Saiganov S, Brill A. Pulmonary Artery Thrombosis: A Diagnosis That Strives for Its Independence. Int J Mol Sci. 2020 Jul 18;21(14):5086; Khan F, Rahman A, Carrier M, Kearon C, Weitz JI, Schulman S, Couturaud F, Eichinger S, Kyrle PA, Becattini C, Agnelli G, Brighton TA, Lensing AWA, Prins MH, Sabri E, Hutton B, Pinede L, Cushman M, Palareti G, Wells GA, Prandoni P, Büller HR, Rodger MA; MARVELOUS Collaborators. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: systematic review and meta-analysis. BMJ.2019;366:l4363 …

Технический результат состоит в обеспечении возможности моделирования тромбоза легочной артерии в условиях венозного тромбоза.

Технический результат достигается тем, что в способе моделирования тромбоза легочной артерии в условиях венозного тромбоза, в ходе которого проводят срединную лапаротомия, перекрывают кровоток в нижней полой вене вблизи левой почечной вены путем наложения лигатуры и сохраняют окклюзию нижней полой вены, согласно изобретению после наложения лигатуры перевязывают все ветви нижней полой вены - и боковые, и задние - до места слияния подвздошных вен, таким образом, что нижняя полая вена оказывается оголенной, причем окклюзию осуществляют под левой почечной веной и сохраняют до 48 часов для достижения тромбоза легочной артерии.

Предлагаемый способ обеспечивает возможность моделирования тромбоза легочной артерии в условиях венозного тромбоза. Данный способ позволяет за счет перевязки нижней полой вены и ее ветвей исключить возможность эмболии из тромбированного сегмента. В основе предлагаемой модели процессы тромбообразования в легочной артерии, которые происходят не вследствие тромбоэмболии (как в прототипе и известных методиках), а вследствие тромбоза в самой легочной артерии на фоне тромбоза в глубоких венах. При этом механизм миграции тромба полностью исключен из модели, поскольку за счет сохранения лигатуры на полой вене и перевязанных во время экспериментов ее ветвей нижняя полая вена оказывается полностью исключенной из кровотока. Тромбоз, который в ней развивается, создает основу для системных эффектов, лежащих в основе развития тромбоза легочной артерии за счет воздействия на ее эндотелий. До настоящего времени подобных методик раскрыто не было.

Заявляемый способ осуществляют следующим образом.

Для моделирования тромбоза легочной артерии в условиях венозного тромбоза лабораторным животными (мыши, крысы) вводят ингаляционный наркоз (Изофлюран). Затем выполняют срединную лапаротомию и перекрывают кровоток в нижней полой вене вблизи левой почечной вены путем наложения лигатуры. Причем лигатуру накладывают тотчас ниже левой почечной вены до полного устранения просвета нижней полой вены. После наложения лигатуры перевязывают все ветви нижней полой вены - и боковые, и задние - до места слияния подвздошных вен, таким образом, что нижняя полая вена оказывается оголенной. Окклюзию под левой почечной веной сохраняют до 48 часов для достижения тромбоза легочной артерии

Заявляемое изобретение поясняется примером.

Для изучения локального тромбообразования в легочной артерии на фоне тромбоза глубоких вен предлагаемая модель была отработана на половозрелых крысах обоего пола.

Операция была проведена под ингаляционным наркозом (Изофлюран), что является стандартом проведения наркоза экспериментальным животным (мыши, крысы). Была выполнена срединная лапаротомия. Нижняя полая вена лигирована тотчас ниже левой почечной вены до полного устранения просвета нижней полой вены. Далее были перевязаны все боковые и задние притоки нижней полой вены от места наложенной лигатуры до слияния общих подвздошных вен. После проводили ушивание брюшной полости.

Через 48 часов была осуществлена эвтаназия крысы под ингаляционным наркозом (Изофлюран в токсических концентрациях) путем забора до 5 мл крови, что оказывается эквивалентно летальной кровопотере.

При гистологическом исследовании у 80% крыс в ветвях легочной артерии было обнаружено формирование фибриновых тромбов с лейкоцитарным компонентом. Результат подтвержден гистологическими исследованиями с проведением окрасок гематоксилином и эозином и тройной окраской на фибрин («Биовитрум»).

Таким образом, впервые разработан способ получения экспериментальной модели локального тромбоза легочной артерии в условиях тромбоза глубоких вен.

Источники информации

1. Konstantinides S, Schäfer K, Neels JG, Dellas C, Loskutoff DJ. Inhibition of endogenous leptin protects mice from arterial and venous thrombosis. Arteriosclerosis, thrombosis, and vascular biology. 2004;24(11):2196-201.

2. Huang J, Wang S, Luo X, Xie Y, Shi X. Cinnamaldehyde reduction of platelet aggregation and thrombosis in rodents. Thrombosis research. 2007;119(3):337-42.

1. Emerson M, Momi S, Paul W, Alberti PF, Page C, Gresele P. Endogenous nitric oxide acts as a natural antithrombotic agent in vivo by inhibiting platelet aggregation in the pulmonary vasculature. Thrombosis and haemostasis. 1999;81(6):961-6.

2. Gresele P, Momi S, Berrettini M, Nenci GG, Schwarz HP, Semeraro N, Colucci M. Activated human protein C prevents thrombin-induced thromboembolism in mice. Evidence that activated protein c reduces intravascular fibrin accumulation through the inhibition of additional thrombin generation. The Journal of clinical investigation. 1998;101(3):667-76.

3. Tymvios C, Jones S, Moore C, Pitchford SC, Page CP, Emerson M. Real-time measurement of non-lethal platelet thromboembolic responses in the anaesthetized mouse. Thrombosis and haemostasis. 2008;99(2):435-40.

4. Murciano JC, Harshaw D, Neschis DG, Koniaris L, Bdeir K, Medinilla S, Fisher AB, Golden MA, Cines DB, Nakada MT, Muzykantov VR. Platelets inhibit the lysis of pulmonary microemboli. American journal of physiology. Lung cellular and molecular physiology. 2002;282(3):L529-39.

5. Miao R, Liu J, Wang J. Overview of mouse pulmonary embolism models. Drug Discovery Today Disease Models. 2010; 7 (3): 77-82.

6. Kjaergaard B, Kristensen SR, Risom M, Larsson A. A porcine model of massive, totally occlusive, pulmonary embolism. Thrombosis research. 2009;124(2):226-9.

7. Kjærgaard B, Rasmussen BS, de Neergaard S, Rasmussen LH, Kristensen SR. Extracorporeal cardiopulmonary support may be an efficient rescue of patients after massive pulmonary embolism. An experimental porcine study. Thrombosis research. 2012;129(4):e147-51.

8. Lee JH, Chun YG, Lee IC, Tuder RM, Hong SB, Shim TS, Lim CM, Koh Y, Kim WS, Kim DS, Kim WD, Lee SD. Pathogenic role of endothelin 1 in hemodynamic dysfunction in experimental acute pulmonary thromboembolism. American journal of respiratory and critical care medicine. 2001;164(7):1282-7.

9. Murciano JC, Harshaw D, Neschis DG, Koniaris L, Bdeir K, Medinilla S, Fisher AB, Golden MA, Cines DB, Nakada MT, Muzykantov VR. Platelets inhibit the lysis of pulmonary microemboli. American journal of physiology. Lung cellular and molecular physiology. 2002;282(3):L529-39.

10. Singh S, Houng A, Reed GL. Releasing the Brakes on the Fibrinolytic System in Pulmonary Emboli: Unique Effects of Plasminogen Activation and α2-Antiplasmin Inactivation. Circulation. 2017;135(11):1011-1020.

11. Tang Z, Wang X, Huang J, Zhou X, Xie H, Zhu Q, Huang M, Ni S. Gene Expression Profiling of Pulmonary Artery in a Rabbit Model of Pulmonary Thromboembolism.  PloS one. 2016;11(10):e0164530.

12. Zhang JX, Chen YL, Zhou YL, Guo QY, Wang XP. Expression of tissue factor in rabbit pulmonary artery in an acute pulmonary embolism model. World journal of emergency medicine. 2014;5(2):144-7.

13. (Monreal M, Silveira P, Monreal L, Monasterio J, Angles AM, Lafoz E, et al. Comparative study on the antithrombotic efficacy of four low-molecular-weight heparins in three different models of experimental venous thrombosis. Pathophysiol Haemost Thromb. Haemostasis; 1991;21(2):91–7)

14. Gresele P, Momi S, Berrettini M, Nenci GG, Schwarz HP, Semeraro N, Colucci M. Activated human protein C prevents thrombin-induced thromboembolism in mice. Evidence that activated protein c reduces intravascular fibrin accumulation through the inhibition of additional thrombin generation. The Journal of clinical investigation. 1998;101(3):667-76.

15. Tymvios C, Jones S, Moore C, Pitchford SC, Page CP, Emerson M. Real-time measurement of non-lethal platelet thromboembolic responses in the anaesthetized mouse. Thrombosis and haemostasis. 2008;99(2):435-40.

16. Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood. 2002;100(9):3240-4.

17. Tymvios C, Moore C, Jones S, Solomon A, Sanz-Rosa D, Emerson M. Platelet aggregation responses are critically regulated in vivo by endogenous nitric oxide but not by endothelial nitric oxide synthase. British journal of pharmacology. 2009;158(7):1735-42.

18. Assafim M, Frattani FS, Ferreira MS, Silva DM, Monteiro RQ, Zingali RB. Exploiting the antithrombotic effect of the (pro)thrombin inhibitor bothrojaracin. Toxicon: official journal of the International Society on Toxinology. 2016;119:46-51.

19. Robinson VJB, Pineda GE, Salah AK, Pipkin WL, Corley JH, Jonah MH, et al. Latex d-dimer signal in in situ femoral vein thrombus in swine and effect of minidose exogenous tissue plasminogen activator bolus. Chest. American College of Chest Physicians; 2005;127(2):622–9.

20. Vogel GMT, Meuleman DG, Bourgondiën FGM, Hobbelen PMJ. Comparison of two experimental thrombosis models in rats effects of four glycosaminoglycans. Thromb Res; 1989;54(5):399–410.

21. Peternel L, Drevenšek G, Černe M, Štalc A, Stegnar M, Budihna M V. Evaluation of two experimental venous thrombosis models in the rat. Thromb Res; 2005;115(6):527–34.

22. Hollenbach S, Sinha U, Lin PH, Needham K, Frey L, Hancock T, Wong A, Wolf D. A comparative study of prothrombinase and thrombin inhibitors in a novel rabbit model of non-occlusive deep vein thrombosis. Thromb Haemost. 1994;71(3):357-62

23. Shi WY, Wu S, Hu LY, Liu CJ, Gu JP. Swine Model of Thrombotic Caval Occlusion Created by Autologous Thrombus Injection with Assistance of Intra-caval Net Knitting. Sci Rep. Nature Publishing Group; 2015;5(1):1–9.

24. Chi L, Saganek LJ, Rogers KL, Mertz TE, Metz AL, Uprichard ACG, et al. A novel model of venous thrombosis in the vena cava of rabbits. J Pharmacol Toxicol Methods. J Pharmacol Toxicol Methods; 1998;39(4):193–202.

25. Diaz JA, Wrobleski SK, Alvarado CM, Hawley AE, Doornbos NK, Lester PA, et al. P-Selectin inhibition therapeutically promotes thrombus resolution and prevents vein wall fibrosis better than enoxaparin and an inhibitor to von willebrand factor. Arterioscler Thromb Vasc Biol; 2015;35(4):829–37

26. Lin PH, Chen C, Surowiec SM, Conklin B, Bush RL, Lumsden AB. Evaluation of thrombolysis in a porcine model of chronic deep venous thrombosis: An endovascular model. J Vasc Surg;33(3):621–7

27. Diaz JA, Saha P, Cooley B, Palmer OR, Grover SP, Mackman N, et al. Choosing a mouse model of venous thrombosis: A consensus assessment of utility and application. Arterioscler Thromb Vasc Biol; 2019 Mar 1;39(3):311–8.

28. Eitzman D T, Westrick R J, Nabel E G, Ginsburg D. Plasminogen activator inhibitor-1 and vitronectin promote vascular thrombosis in mice. Blood. 2000;95(2):577–80

29. Schönfelder T, Jäckel S, Wenzel P. Mouse models of deep vein thrombosis. Gefasschirurgie; 2017;22(Suppl 1):28–33

30. Diaz JA, Saha P, Cooley B, Palmer OR, Grover SP, Mackman N, et al. Choosing a mouse model of venous thrombosis: A consensus assessment of utility and application. Arterioscler Thromb Vasc Biol. Lippincott Williams and Wilkins; 2019;39(3):311–8

31. Способ моделирования тромбоэмболии легочной артерии у крыс: патент RU2610212, Российская Федерация, заявка RU2015155815, заявл. 24.12.2015, опубл. 08.02.2017.

32. Porembskaya O, Toropova Y, Tomson V, Lobastov K, Laberko L, Kravchuk V, Saiganov S, Brill A. Pulmonary Artery Thrombosis: A Diagnosis That Strives for Its Independence. Int J Mol Sci. 2020 Jul 18;21(14):5086; Khan F, Rahman A, Carrier M, Kearon C, Weitz JI, Schulman S, Couturaud F, Eichinger S, Kyrle PA, Becattini C, Agnelli G, Brighton TA, Lensing AWA, Prins MH, Sabri E, Hutton B, Pinede L, Cushman M, Palareti G, Wells GA, Prandoni P, Büller HR, Rodger MA; MARVELOUS Collaborators. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: systematic review and meta-analysis. BMJ.2019;366:l4363.

Похожие патенты RU2770355C1

название год авторы номер документа
Способ моделирования локального фототромбоза на ухе кролика 2022
  • Немирова Светлана Владимировна
  • Шахов Евгений Борисович
  • Шарабрин Евгений Георгиевич
  • Петрова Ксения Сергеевна
  • Мовсисян Гегам Седракович
RU2782117C1
Способ оценки вероятности тромбоэмболии легочной артерии из ушка правого предсердия у взрослых пациентов 2017
  • Васильцева Оксана Ярославна
  • Ворожцова Ирина Николаевна
  • Лавров Алексей Геннадьевич
  • Горлова Анастасия Андреевна
  • Панфилова Ирина Хусановна
  • Кришкевич Елена Владимировна
RU2677013C2
Способ прогнозирования развития тромбоэмболии легочной артерии у онкологических больных с флеботромбозом нижних конечностей 2016
  • Кит Олег Иванович
  • Кательницкая Оксана Васильевна
  • Кательницкий Игорь Иванович
RU2664448C2
СПОСОБ ЛЕЧЕНИЯ ПОДОСТРЫХ ВЕНОЗНЫХ ТРОМБОЗОВ РАЗЛИЧНОЙ ЛОКАЛИЗАЦИИ 2015
  • Суханова Галина Александровна
  • Васильева Елена Викторовна
  • Стоцкая Татьяна Васильевна
RU2595238C1
Способ моделирования нарушений гемостаза при сочетанном поражении легких бактериальным воспалением и тромбозом легочных сосудов 2023
  • Федотова Елена Павловна
  • Филонова Мария Васильевна
  • Неупокоева Оксана Владимировна
  • Никифоров Павел Евгеньевич
  • Сандрикина Любовь Александровна
  • Фомина Татьяна Ивановна
  • Дубская Татьяна Юрьевна
  • Котловская Лариса Юрьевна
  • Чурин Алексей Александрович
  • Удут Владимир Васильевич
RU2800645C1
СПОСОБ МОДЕЛИРОВАНИЯ ТРОМБОЭМБОЛИИ ЛЕГОЧНОЙ АРТЕРИИ У КРЫС 2015
  • Самородов Александр Владимирович
  • Халиуллин Феркат Адельзянович
  • Камилов Феликс Хусаинович
  • Халимов Алмаз Радыкович
RU2610212C1
СПОСОБ ЛЕЧЕНИЯ ОСТРЫХ ТРОМБОЗОВ ГЛУБОКИХ ВЕН НИЖНИХ КОНЕЧНОСТЕЙ 1997
  • Киричук В.Ф.
  • Лосев Р.З.
  • Львович В.Л.
RU2113238C1
СРЕДСТВО ДЛЯ ЛЕЧЕНИЯ И ПРОФИЛАКТИКИ ТРОМБОЗА 2017
  • Халиуллин Феркат Адельзянович
  • Самородов Александр Владимирович
  • Шабалина Юлия Викторовна
  • Камилов Феликс Хусаинович
RU2662308C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ТРОМБОЗА 2023
  • Власов Владимир Сергеевич
  • Спельников Дмитрий Михайлович
  • Осипов Николай Николаевич
  • Козина Ольга Владимировна
  • Вавилова Татьяна Владимировна
RU2810460C1
СПОСОБ ОЦЕНКИ ВЕРОЯТНОСТИ ПРИСТЕНОЧНОГО ТРОМБОЗА ПРАВЫХ КАМЕР СЕРДЦА - ПРАВОГО ПРЕДСЕРДИЯ И ПРАВОГО ЖЕЛУДОЧКА 2012
  • Васильцева Оксана Ярославна
  • Ворожцова Ирина Николаевна
  • Карпов Ростислав Сергеевич
RU2488347C1

Реферат патента 2022 года Способ моделирования тромбоза легочной артерии в условиях венозного тромбоза

Изобретение относится к экспериментальной медицине, а именно к хирургии. Перекрывают кровоток в нижней полой вене под левой почечной веной путем наложения лигатуры. Перевязывают все боковые и задние притоки нижней полой вены до места слияния подвздошных вен таким образом, что нижняя полая вена оказывается оголенной. Окклюзию сохраняют до 48 часов для достижения тромбоза легочной артерии. Способ обеспечивает возможность моделирования локального тромбоза легочной артерии в условиях тромбоза глубоких вен, исключает миграцию тромба за счет сохранения лигатуры на нижней полой вене и перевязанных ее ветвей, при этом тромбоз, который в ней развивается, создает основу для системных эффектов, лежащих в основе развития тромбоза легочной артерии за счет воздействия на ее эндотелий. 1 пр.

Формула изобретения RU 2 770 355 C1

Способ моделирования тромбоза легочной артерии в условиях венозного тромбоза, в ходе которого проводят срединную лапаротомию, перекрывают кровоток в нижней полой вене у левой почечной вены путем наложения лигатуры и сохраняют окклюзию нижней полой вены, отличающийся тем, что после наложения лигатуры перевязывают все боковые и задние притоки нижней полой вены до места слияния подвздошных вен таким образом, что нижняя полая вена оказывается оголенной, причем окклюзию осуществляют под левой почечной веной и сохраняют до 48 часов для достижения тромбоза легочной артерии.

Документы, цитированные в отчете о поиске Патент 2022 года RU2770355C1

POLAK DAWID et al
"Intravital Assessment of Blood Platelet Function
A Review of the Methodological Approaches with Examples of Studies of Selected Aspects of Blood Platelet Function." International journal of molecular sciences vol
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Способ восстановления спиралей из вольфрамовой проволоки для электрических ламп накаливания, наполненных газом 1924
  • Вейнрейх А.С.
  • Гладков К.К.
SU2020A1
СПОСОБ МОДЕЛИРОВАНИЯ ТРОМБОЭМБОЛИИ ЛЕГОЧНОЙ АРТЕРИИ У КРЫС 2015
  • Самородов Александр Владимирович
  • Халиуллин Феркат Адельзянович
  • Камилов Феликс Хусаинович
  • Халимов Алмаз Радыкович
RU2610212C1
CN 113229218 A, 10.08.2021
DIAZ J.A
et al
Inferior

RU 2 770 355 C1

Авторы

Порембская Ольга Ярославовна

Сайганов Сергей Анатольевич

Кравчук Вячеслав Николаевич

Даты

2022-04-15Публикация

2021-08-26Подача