Смеси ароматических углеводородов, содержащие C-C-циклы, как жидкий органический носитель водорода и водородный цикл на его основе Российский патент 2022 года по МПК C01B3/26 

Описание патента на изобретение RU2771200C1

Изобретение относится к области водородной энергетики, металлорганической химии и катализа, в частности к разработке химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования, для автономных энергетических систем, включая наземные и водные средства транспорта, стационарных объектов наземного базирования, других устройств, оснащенных водородными двигателями, а также при создании жидких органических носителей водорода (ЖОНВ).

Существуют различные подходы к хранению водорода, например, в компримированном состоянии при высоком давлении, в жидком виде, физически адсорбированном пористыми материалами состоянии, в форме гидридов металлов и химических гидридов. Использование сжатого водорода вызывает опасения по поводу безопасности и стоимости. Криогенный водород имеет высокую плотность и приемлем при хранении в больших хранилищах. Однако для использования энергии транспортом существенны затраты на сжижение, есть проблемы с последующим испарением. Гидриды металлов имеют недостатки в области термодинамики реакции, малую скорость реакции или низкую емкость по водороду.

Жидкие органические носители водорода являются одними из перспективных аккумуляторов этого энергоносителя, способны накапливать 5-8 мас. % водорода, участвуют в обратимых реакциях гидрирования-дегидрирования при умеренных температурах, используемые гетерогенные катализаторы хорошо изучены, относительно недороги, имеют длительный рабочий цикл.

Предметом настоящего изобретения является способ применения смесей, содержащих, по крайней мере, одно соединение, выбранное из ряда: флуорантен, флуорен и, по крайней мере, одно соединение, выбранное из ряда: антрацен, нафталин, фенантрен, бензол, в качестве жидкого органического носителя водорода. Перечисленные соединения являются крупнотоннажными и доступными продуктами, получаемыми в процессе коксохимической переработки углей.

Предложен состав жидкой при комнатной температуре смеси,, содержащей два или более соединений, выбранных из изомеров бензилтолуола и/или дибензилтолуола в каталитических процессах для связывания водорода и/или его выделения [US 20150266731 А1, "Liquid compounds and method for the use there of as hydrogen stores", A. Boesmann,. P. Wasserscheid, N. Brueckner, J. Dungs. Pub. No.: US 2015/0266731 A1, Pub. Data: Sep 24, 2015]. Недостатком данного жидкого носителя водорода является его невысокая емкость по водороду на единицу массы, т.к. используемые ароматические соединения представляют собой моноциклы,, соединенные алкильными цепочками, которые имеют относительно низкую плотность и высокие тепловые эффекты процессов «гидрирования-дегидрирования», что обуславливает необходимость использования разбавленных водородонасыщенной формой соединения потоков сырья для, снижения тепловых эффектов в реакторе. Практически это означает потери энергии на перекачку дополнительного объема ЖОНВ, затраты на дополнительный объем реактора для обеспечения необходимой объемной скорости подачи сырья. Как следствие, снижается энергетическая эффективность реализуемого водородного цикла.

Наиболее близким к предлагаемому решению является ЖОНВ, который представляет собой дибензилтолуол - пергидродибензилтолуол [M. Niermann, A. Beckendorff, М. Kaltschmitt, K. Bonhoff. Liquid Organic Hydrogen Carrier (LOHC) - Assessment based on chemical and economic properties // International Journal of Hydrogen Energy.44 (2019). 6631-6654]. В данном случае, как и в случае предлагаемой смеси, гидрируются ароматические фрагменты, входящие в структуру соединений.

Недостатком предлагаемой смеси является высокое давление насыщенных паров, что увеличивает потери носителя водорода в процессе эксплуатации и высокие значения тепловых эффектов гидрирования и дегидрирования, что приводит к росту затрат на разбавление и циркуляцию ненасыщенной формы ЖОНВ насыщенной с целью снижения температурных градиентов в реакторе.

Преимуществом смеси, предлагаемой в настоящей заявке, перед дибензилтолуолом и другими соединениями, используемыми в качестве ЖОНВ, является низкое давление насыщенных паров, что снижает потери носителя водорода в процессе эксплуатации и эффекты стерической компенсации пятичленными циклами тепловых эффектов гидрирования и дегидрирования, что обуславливает более низкий тепловой эффект реакции системы по сравнению с тепловыми эффектами реакции гидрирования-дегидрирования индивидуальных соединений, содержащих С6-ароматические циклы. Снижение тепловых эффектов реакции приводит с снижению затрат на снятие избыточного тепла и, как следствие, к увеличению энергетической эффективности реализуемого водородного цикла.

Предлагаемые результаты можно реализовать при проведении реакции в проточном реакторе. Можно рассчитать поглощение водорода исходя из содержания ароматических углеводородов в исходном сырье и в продукте гидрирования, однако в данном случае на входе в реактор и выходе из сепаратора стоят детекторы mass-flow, которые позволяют по разнице непосредственно определить выделение или поглощение водорода.

Техническим результатом настоящего изобретения является использование смеси ароматических углеводородов, содержащихС56-циклы, в качестве жидкого органического носителя водорода, обеспечивающего более высокую энергетическую эффективность реализуемого водородного цикла.

Технический результат достигается тем, что жидкий органический носитель водорода, представляет собой смесь ароматических углеводородов, содержащих С56-циклы, способных в присутствии катализаторов присоединять атомы водорода, и имеющие более низкие тепловые эффекты реакций гидрирования-дегидрирования компонентов, причем смеси содержат, по крайней мере, одно соединение, выбранное из ряда: флуорантен, флуорен и, по крайней мере, одно соединение, выбранное из ряда: антрацен, нафталин, фенантрен, бензол. Жидкий органический носитель водорода представляет собой смесь двух или трех компонентов, причем для бинарной системы соотношения компонентов выбраны из ряда 25:75% масс., 50:50% масс., 75:25% масс., а для системы из трех компонентов первый компонент взят в количестве 25 % масс., второй компонент взят в количестве 26 % масс., третий компонент-в количестве 50 % масс., и третий компонент выбирается из антрацена, нафталина, фенантрена, бензола. Водородный цикл реализуется при связывании водорода при температурах от 110 до 160°С и освобождении водорода при температурах от 320 до 350°С, включает связывание водорода и его высвобождение из жидкого органического носителя водорода, по п.п. 1 и/или 2, в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель - Al2O3, и нанесенную на него Pt, содержание платины Pt находится в пределах 0,1 до 2,0% масс., и/или Pd, содержание палладия Pd находится в пределах 0,1 до 2,0% масс., или Ni, содержание никеля Ni находится в пределах 6 до 12% масс.

Поставленная задача решается тем, что жидкий органический носитель водорода представляет собой смесь ароматических углеводородов, содержащих С56-циклы; водородный цикл, включающий связывание водорода и его высвобождение из жидкого органического носителя водорода, в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель - Al2O3 и нанесенный на него активный металл, выбранный из ряда Pt, Pd, их смеси, или Ni.

Гетерогенный катализатор включает носитель -Al2O3 и нанесенный на него активный металл, выбранный из ряда Pt и/или Pd в количестве от 0,1 до 2,0% масс., или Ni в количестве 6-12% масс.

Эксперименты по гидрированию-дегидрированию смеси проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 110-160°С, дегидрирование при давлении 0,1 МПа и температуре 320-350°С, ОСПС в обоих случаях составляла4 ч-1.

Катализаторы, содержащие платину и/или палладий, готовили адсорбционной пропиткой носителя из водных растворов в присутствии конкурента (уксусной кислоты) в количестве 0,4-0,6 мл ледяной СН3СООН на 10 мл пропиточного раствора. Объем пропиточного раствора был постоянным и составлял 10 мл. Носитель, предварительно прокаленный γ-Al2O3, в количестве 5 г, заливался пропиточным раствором на 24 часа. После стадии сорбции пропиточный раствор сливался с готового катализатора. Никель наносили на поверхность носителя из водного раствора гексагидрата нитрата никеля по влагоемкости. Катализаторы сушили при 80, 100 и 110°С. Активация (восстановление) катализатора по описанной выше программе проводилась непосредственно в реакторе.

Состав катализаторов и результаты гидрирования-дегидрирования в объемах поглощенного и выделенного водорода, а так же тепловой эффект реакции для исследованных систем приведены в таблице 1.

ПРИМЕРЫ

Пример 1.

Смесь флуорантен/антрацен(25:75 по массе) в присутствии катализатора 8,0% масс. Ni/Al2O3 гадрировали при температуре 130°С. По результатам проведенного процесса было поглощено 2,60 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,77 г Н2 на 100 г. ЖОНВ. Тепловой эффект реакции составил -58,7 кДж/моль Н2.

Пример 2.

Смесь флуорантен/антрацен (50:50 по массе) в присутствии катализатора 1,2. % масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,60 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,77 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -51,5 кДж/моль Н2.

Пример 3.

Смесь флуорантен/антрацен (75:25 по массе) в присутствии катализатора 1,4% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,60 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,69 г Н2 на 100 г, ЖОНВ. Тепловой эффект реакции составил -44,3 кДж/моль Н2.

Пример 4.

Смесь флуорантен/нафталин (25:75 по массе) в присутствии катализатора, 10,0% масс. Ni/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,57 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,53 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,2 кДж/моль Н2.

Пример 5.

Смесь флуорантен/нафталин (50:50 по массе) в присутствии катализатора 2,0/2,0% масс. Pt-Pd/Al2O3 гидрировали при температуре 120°С. По результатам проведенного процесса было поглощено 2,58 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,69 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -51,2 кДж/моль Н2.

Пример 6.

Смесь флуорантен/нафталин (75:25 по массе) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,58 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,78 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -44,2 кДж/моль Н2.

Пример 7.

Смесь флуорантен/фенантрен (25:75 по массе) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,57 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,67 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -55,7 кДж/моль Н2.

Пример 8.

Смесь флуорантен/фенантрен (50:50 по массе) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,57 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,75 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -49,5 кДж/моль Н2.

Пример 9.

Смесь флуорантен/фенантрен (75:25 по массе) в присутствии катализатора 0,1% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,57 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,80 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -43,3 кДж/моль Н2.

Пример 10.

Смесь флуорантен/бензол (25:75 по массе) в присутствии катализатора 6,0% масс. Ni/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,51 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,63 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -60,6 кДж/моль Н2.

Пример 11.

Смесь флуорантен/бензол (50:50 по массе) в присутствии катализатора 0,6% масс. Pt/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,52 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,59 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -52,7 кДж/моль Н2.

Пример 12.

Смесь флуорантен/бензол (75:25 по массе) в присутствии катализатора 0,4% масс. Pd/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,59 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,55 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -44,9 кДж/моль Н2.

Пример 13.

Смесь флуорантен/флуорен/антрацен (25:25:50 по массе) в присутствии катализатора 8,0% масс. Ni/Al2O3 гидрировали при температуре 130°С. По результатам проведенного процесса было поглощено 2,54 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,55 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -55,1 кДж/моль Н2.

Пример 14.

Смесь флуорантен/флуорен/нафталин (25:25:50 по массе) в присутствии катализатора 1,2% масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,52 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,59 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -54,8 кДж/моль Н2.

Пример 15.

Смесь флуорантен/флуорен/фенантрен (25:25:50 по массе) в присутствии катализатора 1,4/2,0% масс. Pt-Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,50 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,52 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -53,1 кДж/моль Н2.

Пример 16.

Смесь флуорантен/флуорен/бензол (25:25:50 по массе) в присутствии катализатора 10,0% масс. Ni/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,44 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,50 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -56,3 кДж/моль Н2.

Пример 17.

Смесь флуорантен/антрацен/нафталин (25:25:50 по массе) в присутствии катализатора 0,1% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,56 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,66 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,4 кДж/моль Н2.

Пример 18.

Смесь флуорантен/антрацен/фенантрен (25:25:50 по массе) в присутствии катализатора 6,0% масс. Ni/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,59 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,78 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -56,7 кДж/моль Н2.

Пример 19.

Смесь флуорантен/антрацен/бензол (25:25:50 по массе) в присутствии катализатора 0,6% масс. Pt/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,53 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же. катализаторе при температуре 350°С, при этом выделилось 7,56 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -59,9 кДж/моль Н2.

Пример 20.

Смесь флуорантен/нафталин/фенантрен (25:25:50 по массе) в присутствии катализатора 0,4% масс. Pd/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,57 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,72 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -56,5 кДж/моль Н2.

Пример 21.

Смесь флуорантен/нафталин/бензол (25:25:50 по массе) в присутствии катализатора 8,0% масс. Ni/Al2O3 гидрировали при температуре 130°С. По результатам проведенного процесса было поглощено 2,54 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,58 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -59,8 кДж/моль Н2.

Пример 22.

Смесь флуорантен/фенантрен/бензол (25:25:50 по массе) в присутствии катализатора 1,2/0,1% масс. Pt-Pd/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,52 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,68 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,9 кДж/моль Н2.

Пример 23.

Смесь флуорен/антрацен (25:75 по массе) в присутствии катализатора 1,4% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,53 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,54 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -62,5 кДж/моль Н2.

Пример 24.

Смесь флуорен/антрацен (50:50 по массе) в присутствии катализатора 10,0% масс. Ni/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,46 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,32 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,9 кДж/моль Н2.

Пример 25.

Смесь флуорен/антрацен (75:25 по массе) в присутствии катализатора 2,0% масс. Pt/Al2O3 гидрировали при температуре 120°С. По результатам проведенного процесса было поглощено 2,43 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,18 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -55,1 кДж/моль Н2.

Пример 26.

Смесь флуорен/нафталин (25:75 по массе) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,48 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,48 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -62,0 кДж/моль Н2.

Пример 27.

Смесь флуорен/нафталин (50:50 по массе) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,46 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,43 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,5 кДж/моль Н2.

Пример 28.

Смесь флуорен/нафталин (75:25 по массе) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам, проведенного процесса было поглощено 2,39 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,15 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -54,9 кДж/моль Н2.

Пример 29.

Смесь флуорен/фенантрен (25:75 по массе) в присутствии катализатора 0,1% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,53 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,57 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -59,4 кДж/моль Н2.

Пример 30.

Смесь флуорен/фенантрен (50:50 по массе) в присутствии катализатора 6,0% масс. Ni/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,46 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,35 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -56,8 кДж/моль Н2.

Пример 31.

Смесь флуорен/фенантрен (75:25 по массе) в присутствии катализатора 0,6% масс. Pt/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,39 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,28 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -54,0 кДж/моль Н2.

Пример 32.

Смесь флуорен/бензол (25:75 по массе) в присутствии катализатора 0,1/0,4% масс. Pt-Pd/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,45 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,41 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -64,4 кДж/моль Н2.

Пример 33.

Смесь флуорен/бензол (50:50 по массе) в присутствии катализатора 8,0% масс. Ni/Al2O3 гидрировали при температуре 130°С. По результатам, проведенного процесса было поглощено 2,42 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,24 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -60,2 кДж/моль Н2.

Пример 34.

Смесь флуорен/бензол (75:25 по массе) в присутствии катализатора 1,2% масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,39 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,14 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -55,8 кДж/моль Н2.

Пример 35.

Смесь флуорен/антрацен/нафталин (25:25:50 по массе) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,50 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,50 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -62,1 кДж/моль Н2.

Пример 36.

Смесь флуорен/антрацен/фенантрен (25:25:50 по массе) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,52 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,61 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -60,4 кДж/моль Н2.

Пример 37.

Смесь флуорен/антрацен/бензол (25:25:50 по массе) в присутствии катализатора 0,1% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,48 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,39 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -63,8 кДж/моль Н2.

Пример 38.

Смесь флуорен/нафталин/фенантрен (25:25:50 по массе) в присутствии катализатора 6,0% масс. Ni/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,50 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,55 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -60,2 кДж/моль Н2.

Пример 39.

Смесь флуорен/нафталин/бензол (25:25:50 по массе) в присутствии катализатора 2,0/0,6% масс. Pt-Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,47 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,41 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -63,6 кДж/моль Н2.

Пример 40.

Смесь флуорен/фенантрен/бензол (25:25:50 по массе) в присутствии катализатора 0,4% масс. Pd/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,47 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,51 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -62,7 кДж/моль Н2.

Похожие патенты RU2771200C1

название год авторы номер документа
Смеси азоторганических соединений, содержащих ароматические C-C-циклы, как жидкий органический носитель водорода и водородный цикл на его основе 2020
  • Пимерзин Андрей Алексеевич
  • Веревкин Сергей Петрович
  • Максимов Николай Михайлович
  • Солманов Павел Сергеевич
  • Пимерзин Алексей Андреевич
  • Востриков Сергей Владимирович
  • Мартыненко Евгения Андреевна
RU2773218C1
Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе 2018
  • Пимерзин Андрей Алексеевич
  • Веревкин Сергей Петрович
  • Томина Наталья Николаевна
  • Максимов Николай Михайлович
  • Мартыненко Евгения Андреевна
  • Востриков Сергей Владимирович
  • Солманов Павел Сергеевич
  • Пимерзин Алексей Андреевич
  • Чернова Маргарита Михайловна
RU2725230C2
Дифенилферроцен как жидкий органический носитель водорода, а также водородный цикл на его основе 2019
  • Пимерзин Андрей Алексеевич
  • Веревкин Сергей Петрович
  • Томина Наталья Николаевна
  • Максимов Николай Михайлович
  • Мартыненко Евгения Андреевна
  • Востриков Сергей Владимирович
  • Солманов Павел Сергеевич
  • Пимерзин Алексей Андреевич
RU2741301C1
Способ селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (КОРС), их применение в качестве жидкого органического носителя водорода и водородный цикл на его основе 2018
  • Пимерзин Андрей Алексеевич
  • Веревкин Сергей Петрович
  • Томина Наталья Николаевна
  • Максимов Николай Михайлович
  • Мартыненко Евгения Андреевна
  • Востриков Сергей Владимирович
  • Чернова Маргарита Михайловна
RU2714810C1
Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе 2018
  • Пимерзин Андрей Алексеевич
  • Веревкин Сергей Петрович
  • Томина Наталья Николаевна
  • Востриков Сергей Владимирович
  • Минаев Павел Петрович
  • Максимов Николай Михайлович
RU2699629C1
ЖИДКИЙ ОРГАНИЧЕСКИЙ НОСИТЕЛЬ ВОДОРОДА НА ОСНОВЕ ПОБОЧНЫХ ПРОДУКТОВ ПРОИЗВОДСТВА КАПРОЛАКТАМА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ВОДОРОДНЫЙ ЦИКЛ НА ЕГО ОСНОВЕ 2021
  • Мартыненко Евгения Андреевна
  • Востриков Сергей Владимирович
  • Коннова Мария Евгеньевна
  • Веревкин Сергей Петрович
RU2791672C1
ЖИДКИЙ ОРГАНИЧЕСКИЙ НОСИТЕЛЬ ВОДОРОДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2022
  • Самойлов Вадим Олегович
  • Султанова Мадина Утимуратовна
  • Борисов Роман Сергеевич
  • Максимов Антон Львович
RU2806614C1
КАТАЛИТИЧЕСКИЙ КОМПОЗИТНЫЙ МАТЕРИАЛ ДЛЯ ХРАНЕНИЯ ВОДОРОДА И СПОСОБ ХРАНЕНИЯ ВОДОРОДА В КАТАЛИТИЧЕСКИХ СИСТЕМАХ НА ОСНОВЕ РЕАКЦИЙ ГИДРИРОВАНИЯ-ДЕГИДРИРОВАНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ 2004
  • Богдан Виктор Игнатьевич
  • Кустов Леонид Модестович
  • Кустов Аркадий Леонидович
  • Тарасов Андрей Леонидович
RU2281154C2
МАТЕРИАЛЫ ДЛЯ ХРАНЕНИЯ ВОДОРОДА НА ОСНОВЕ КАТАЛИТИЧЕСКИХ КОМПОЗИТОВ И СПОСОБ ХРАНЕНИЯ ВОДОРОДА В КАТАЛИТИЧЕСКИХ КОМПОЗИТНЫХ СИСТЕМАХ НА ОСНОВЕ РЕАКЦИЙ ГИДРИРОВАНИЯ - ДЕГИДРИРОВАНИЯ АЦЕТИЛЕНОВЫХ СОЕДИНЕНИЙ 2005
  • Тарасов Андрей Леонидович
  • Кустов Леонид Модестович
  • Богдан Виктор Игнатьевич
  • Кустов Аркадий Леонидович
RU2304462C2
СПОСОБ ОЧИСТКИ СТИРОЛА ОТ ПРИМЕСЕЙ ФЕНИЛАЦЕТИЛЕНА 2008
  • Смирнов Владимир Валентинович
  • Николаев Сергей Александрович
RU2385857C1

Реферат патента 2022 года Смеси ароматических углеводородов, содержащие C-C-циклы, как жидкий органический носитель водорода и водородный цикл на его основе

Изобретение относится к жидкому органическому носителю водорода, представляющему собой смесь ароматических углеводородов, содержащих С56-циклы, способных в присутствии катализаторов присоединять атомы водорода, причем смеси содержат по крайней мере одно соединение, выбранное из ряда: флуорантен, флуорен, и по крайней мере одно соединение, выбранное из ряда: антрацен, нафталин, фенантрен, бензол, причем жидкий органический носитель водорода представляет собой смесь двух или трех компонентов, причем для бинарной системы соотношения компонентов выбраны из ряда 25:75% масс., 50:50% масс., 75:25% масс., а для системы из трех компонентов первый компонент взят в количестве 25% масс., второй компонент взят в количестве 26% масс., третий компонент - в количестве 50% масс. и третий компонент выбирается из антрацена, нафталина, фенантрена, бензола. Также изобретение относится к водородному циклу, реализуемому при связывании водорода при температурах от 110 до 160°С и освобождении водорода при температурах от 320 до 350°С, включающему связывание водорода и его высвобождение из жидкого органического носителя водорода, указанного выше, в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель Al2O3 и нанесенную на него Pt, содержание платины Pt находится в пределах от 0,1 до 2,0% масс., и/или Pd, содержание палладия Pd находится в пределах от 0,1 до 2,0% масс., или Ni, содержание никеля Ni находится в пределах от 6 до 12% масс. Использование предлагаемого носителя обеспечивает более высокую энергетическую эффективность. 2 н.п. ф-лы, 1 табл., 40 пр.

Формула изобретения RU 2 771 200 C1

1. Жидкий органический носитель водорода, представляющий собой смесь ароматических углеводородов, содержащих С56-циклы, способных в присутствии катализаторов присоединять атомы водорода, причем смеси содержат по крайней мере одно соединение, выбранное из ряда: флуорантен, флуорен, и по крайней мере одно соединение, выбранное из ряда: антрацен, нафталин, фенантрен, бензол, причем жидкий органический носитель водорода представляет собой смесь двух или трех компонентов, причем для бинарной системы соотношения компонентов выбраны из ряда 25:75% масс., 50:50% масс., 75:25% масс., а для системы из трех компонентов первый компонент взят в количестве 25% масс., второй компонент взят в количестве 26% масс., третий компонент - в количестве 50 % масс. и третий компонент выбирается из антрацена, нафталина, фенантрена, бензола.

2. Водородный цикл, реализуемый при связывании водорода при температурах от 110 до 160°С и освобождении водорода при температурах от 320 до 350°С, включающий связывание водорода и его высвобождение из жидкого органического носителя водорода по п. 1 в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель Al2O3 и нанесенную на него Pt, содержание платины Pt находится в пределах от 0,1 до 2,0% масс., и/или Pd, содержание палладия Pd находится в пределах от 0,1 до 2,0% масс., или Ni, содержание никеля Ni находится в пределах от 6 до 12% масс.

Документы, цитированные в отчете о поиске Патент 2022 года RU2771200C1

МАТЕРИАЛЫ ДЛЯ ХРАНЕНИЯ ВОДОРОДА НА ОСНОВЕ КАТАЛИТИЧЕСКИХ КОМПОЗИТОВ И СПОСОБ ХРАНЕНИЯ ВОДОРОДА В КАТАЛИТИЧЕСКИХ КОМПОЗИТНЫХ СИСТЕМАХ НА ОСНОВЕ РЕАКЦИЙ ГИДРИРОВАНИЯ - ДЕГИДРИРОВАНИЯ АЦЕТИЛЕНОВЫХ СОЕДИНЕНИЙ 2005
  • Тарасов Андрей Леонидович
  • Кустов Леонид Модестович
  • Богдан Виктор Игнатьевич
  • Кустов Аркадий Леонидович
RU2304462C2
Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе 2018
  • Пимерзин Андрей Алексеевич
  • Веревкин Сергей Петрович
  • Томина Наталья Николаевна
  • Максимов Николай Михайлович
  • Мартыненко Евгения Андреевна
  • Востриков Сергей Владимирович
  • Солманов Павел Сергеевич
  • Пимерзин Алексей Андреевич
  • Чернова Маргарита Михайловна
RU2725230C2
Способ извлечения водорода 1990
  • Гулиянц Сурен Татевосович
  • Котванов Василий Сергеевич
  • Савельев Виталий Савельевич
SU1798296A1
US 2012321549 A1, 20.12.2012
US 2017166496 A1, 15.06.2017.

RU 2 771 200 C1

Авторы

Пимерзин Андрей Алексеевич

Веревкин Сергей Петрович

Востриков Сергей Владимирович

Пимерзин Алексей Андреевич

Мартыненко Евгения Андреевна

Максимов Николай Михайлович

Солманов Павел Сергеевич

Даты

2022-04-28Публикация

2020-08-19Подача