Твердые растворы BiTe-SbTe-SbSe-BiSe n- и p-типов проводимости с повышенной механической прочностью Российский патент 2022 года по МПК H01L35/16 C22C12/00 

Описание патента на изобретение RU2774636C1

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к области термоэлектрического преобразования энергии, в частности к термоэлектрическому материалу в виде твердых растворов Bi2Te3-Sb2Te3-Sb2Se3-Bi2Se3 n- и р-типов проводимости, содержащих легирующие добавки.

УРОВЕНЬ ТЕХНИКИ

Основными материалами, применяемыми в термоэлектричестве для прямого преобразования энергии (в холодильниках и генераторных модулях), являются полупроводниковые материалы на основе твердых растворов Bi2Te3-Sb2Te3-Sb2Se3-Bi2Se3 {1}, прототип.

Недостатком указанного полупроводникового материала является невысокая механическая прочность материала.

Поскольку термоэлементы из этих материалов работают в условиях значительных перепадов температур от 30°С до 130°С, а значит термомеханических напряжений, поэтому важной характеристикой термоэлектрических материалов является их механическая прочность. Основным направлением улучшения механических свойств сейчас является переход от крупнокристаллических материалов, полученных плавлением, к поликристаллам, получаемых методами порошковой металлургии {2}.

Легирование {3} является одним из методов изменения электрофизических и механических свойств материалов. Оно заключается в замещении атомов в кристаллической решетке основного материала атомами легирующего элемента. Это ведет к искажению кристаллической решетки, поскольку радиусы ионов легирующих элементов отличаются от радиусов атомов основного материала, что может повышать твердость и прочность основного материала с сохранением его пластичности. Зачастую легирование проводят, вводя несколько элементов одновременно. В полупроводниках легирование используют в основном для настройки оптимальной, сточки зрения получения нужного физического эффекта, концентрации носителей тока, что не исключает изменения механических свойств полупроводника.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей заявленного изобретения является разработка термоэлектрических материалов, обладающими высокими механическим характеристиками.

Техническим результатом изобретения является повышение физико-механической прочности термоэлектрических материалов n- и р-типов.

Указанный технический результат достигается за счет того, что термоэлектрический материал, являющейся полупроводниковым материалом n-типа в виде твердого раствора (Bi2Te3)a-(Bi2Se3)b, где а=86-94, b=5,9-14, содержит легирующие добавки, выбранные из группы:, хлор, бром, йод, германий.

Указанный технический результат достигается за счет того, что термоэлектрический материал, являющейся полупроводниковым материалом n-типа в виде твердого раствора (Bi2Te3)a-(Bi2Se3)b.(Sb2Se3)c, где а=86-94, b=5,9-14, с=0,1-1; содержит легирующие добавки, выбранные из группы: хлор, бром, йод, германий.

Количественное содержание легирующей добавки хлора, брома или йода составляет 0,01-0,19 мас %.

Количественное содержание легирующей добавки германия составляет 0,01-0,12 мас.%.

Указанный технический результат достигается также за счет того, что термоэлектрический материал, являющейся полупроводниковым материалом р-типа в виде твердого раствора (Bi2Te3)a-(Sb2Te3)b, где а=15-30, b=60-85, содержит легирующие добавки, выбранные из группы германий, свинец.

Указанный технический результат достигается за счет того, что термоэлектрический материал, являющейся полупроводниковым материалом р-типа в виде твердого раствора (Bi2Te3)a-(Sb2Te3)b-(Sb2Se3)c, где а=15-30, b=60-85, с=0,5-10 содержит легирующие добавки, выбранные из группы германий, свинец.

Количественное содержание легирующей добавки свинца составляет 0-0,1 мас.%.

Количественное содержание легирующей добавки германия составляет 0,01-0,12 мас.%.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Изобретение будет более понятным из описания, не имеющего ограничительного характера и приводимого со ссылками на прилагаемые чертежи, на которых изображено:

Фиг. 1 - Зависимость коэффициента мощности (α2σ) термоэлектрического материала в виде твердого раствора р-типа (Sb2Te3)66,5⋅(Sb2Se3)5⋅(Bi2Te3)28,5 от концентрации легирующей добавки: 1 - Pb; 2 - Ge.

Фиг. 2 - Зависимость термоэлектрической эффективности (Z) термоэлектрического материала в виде твердого раствора р-типа (Sb2Te3)66,5⋅(Sb2Se3)5⋅(Bi2Te3)28,5 от концентрации легирующей добавки: 1 - Pb; 2 - Ge.

Фиг. 3 - Влияние добавок на прочность (Р) термоэлектрического материала в виде твердого раствора р-типа (Sb2Te3)66,5⋅(Sb2Se3)5⋅(Bi2Te3)28,5.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Для улучшения механических свойств твердых растворов Bi2Te3-Sb2Te3-Sb2Se3-Bi2Se3 в термоэлектрический материал, являющейся полупроводниковым материалом n-типа в виде твердого раствора (Bi2Te3)a-(Bi2Se3)b или твердого раствора (Bi2Te3)a-(Bi2Se3)b-(Sb2Se3)c, где а=86-94, b=5,9-14, с=0-1,0. добавляют легирующую добавку германия в количестве 0,01-0,12 мас.% от содержания указанного термоэлектрического материала и легирующую добавку хлора, брома или йода в количестве 0,01-0,14 мас %.

Для получения заявленных термоэлектрических материалов n-типа в виде твердых растворов (Bi2Te3)a-(Bi2Se3)b, где а=86-94, b=5,9-14 или (Bi2Te3)a-(Bi2Se3)b·(Sb2Se3)c, где а=86-94, b=5,9-14, с=0-1,0 и сохранения эффекта упрочнения материала за счет мелкозернистого поликристаллического состояния, совместно синтезируется термоэлектрический материал с легирующей добавкой хлора, брома или йода, а также металлическим германием. Синтезированный материал в виде слитков загружают в щековую дробилку, где происходит дробление слитков до размеров частиц 2 мм, затем дробленная смесь указанных материалов загружается в ударно-вихревую мельницу, где происходит измельчение до размеров частиц 0,005-0,75 мм. Полученный порошок брикетировали с последующим получением заявленного материала с помощью горячей экструзии. В результате получили плотные термоэлектрические материалы в виде твердых растворов (Bi2Te3)a-(Bi2Se3)b, где а=86-94, b=5,9-14 с легирующей добавкой германия в количестве 0,01-0,12 мас.% и с легирующей добавкой хлора, брома или йода в количестве 0,01-0,19 мас %, а также (Bi2Te3)a-(Bi2Se3)b·(Sb2Se3)c, где а=86-94, b=5,9-14, с=0-1,0 с легирующей добавкой германия в количестве 0,01-0,12 мас.% и с легирующей добавкой хлора, брома или йода в количестве 0,01-0,14 мас %, Кристаллиты твердых растворов в полученных материалах составляли 5-10 мкм.

Для улучшения механических свойств твердых растворов Bi2Te3-Sb2Te3-Sb2Se3-Bi2Se3 в термоэлектрический материал, являющийся полупроводниковым материалом р-типа в виде твердого раствора (Bi2Te3)а-(Sb2Te3)b или твердого раствора (Bi2Te3)а-(Sb2Te3)b-(Sb2Se3)c, где а=15-30, b=60-85, с=0-10 добавляют легирующую добавку германия в количестве 0,01-0,12 мас.% от содержания указанного термоэлектрического материала и легирующую добавку свинца в количестве 0-0,1 мас %.

Для получения заявленных термоэлектрических материалов р-типа в виде твердых растворов (Bi2Te3)a-(Sb2Te3)b или (Bi2Te3)a-(Sb2Te3)b-(Sb2Se3)c, где а=15-30, b=60-85 с=0-10, сохранения эффекта упрочнения материала за счет мелкозернистого поликристаллического состояния, совместно синтезируется термоэлектрический материал, металлический германий, металлический свинец или только металлический германий, в необходимых количествах. Синтезированный материал в виде слитков загружают в щековую дробилку, где происходит дробление слитков до размеров частиц 2 мм, затем дробленная смесь указанных материалов загружается в ударно-вихревую мельницу, где происходит измельчение указанных материалов до размеров частиц 0,005-0,55 мм. Полученный порошок брикетировали с последующим получением заявленного материала с помощью горячей экструзии. В результате получили плотный термоэлектрический материал в виде твердых растворов (Bi2Te3)а-(Sb2Te3)b, где а=15-30, b=60-85, и (Bi2Te3)a-(Sb2Te3)b-(Sb2Se3)c, где а=15-40, b=60-85 с=0-10, с легирующей добавкой германия в количестве 0,01-0,12 мас.% и с легирующей добавкой свинца в количестве 0-0,1 мас.%. Кристаллиты твердых растворов в полученных материалах составляли 5-10 мкм.

Физико-механические свойства термоэлектрического материала, содержащего полупроводниковый материал р-типа в виде твердого раствора (Sb2Te3)66,5⋅(Sb2Se3)5⋅(Bi2Te3)28,5 представлены на фиг. 1-3. В таблице 1 и 2 представлены физико-механические свойства заявленного термоэлектрического материала в зависимости от содержания каждого твердого раствора в материале и количества легирующей добавки.

Изобретение было раскрыто выше со ссылкой на конкретный вариант его осуществления. Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как оно раскрыто в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только нижеследующей формулой изобретения.

Список литература:

1 - Гольцман Б.М., Кудинов В.А., Смирнов И.А. «Полупроводниковые термоэлектрические материалы на основе Bi2Te3», Издательство «Наука», 1972.

2 - Gupta R., Sharp J. «lnfluence of grain size on the flexible strength of (Bi, Sb)2Te3 and Bi2(TeSb)3 alloys». 36th International Conference on Thermoelectrics. 2017, Pasadena, USA.

3 - Гуляев А.П. «Металловедение», изд-во «Металлургия», 1986.

Похожие патенты RU2774636C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ВЕТВЕЙ ДЛЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ И ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ 2012
  • Гришин Валерий Иванович
RU2515128C1
ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ (ВАРИАНТЫ) 2013
  • Гришин Валерий Иванович
  • Маева Татьяна Николаевна
RU2537096C2
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА 1983
  • Абрикосов Н.Х.
  • Иванова Л.Д.
  • Свечникова Т.Е.
  • Чижевская С.Н.
SU1140492A1
СПОСОБ КОММУТАЦИИ ТЕРМОЭЛЕМЕНТА 1999
  • Штерн Ю.И.
  • Пичугин В.С.
RU2150160C1
ВЫСОКОТЕМПЕРАТУРНЫЙ ВЫСОКОЭФФЕКТИВНЫЙ ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ 2009
  • Ливитт Фредерик А.
  • Элснер Норберт Б.
  • Басс Джон К.
  • Маккой Джон В.
RU2550799C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ МОДУЛЕЙ 2001
  • Прилепо Ю.П.
  • Кичкайло А.А.
RU2195049C1
ЛАКОКРАСОЧНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ТОНКИХ ПОКРЫТИЙ МЕТОДОМ КАТОДНОГО ЭЛЕКТРООСАЖДЕНИЯ 2017
  • Уткина Ирина Федоровна
  • Маева Татьяна Николаевна
  • Тимонкина Надежда Владимировна
RU2676608C1
Способ повышения добротности термоэлектрического материала на основе твердого раствора BiTe-BiSe 2019
  • Белоногов Евгений Константинович
  • Гребенников Антон Александрович
  • Дыбов Владислав Анатольевич
  • Костюченко Александр Викторович
  • Кущев Сергей Борисович
  • Сериков Дмитрий Владимирович
RU2727061C1
Высокоэффективный термоэлектрический материал и способ его изготовления 2016
  • Холопкин Алексей Иванович
  • Нестеров Сергей Борисович
  • Кондратенко Рим Олегович
RU2660223C2
Термоэлемент (варианты) 2018
  • Дашевский Зиновий Моисеевич
  • Дудкин Лев Дмитриевич
  • Скипидаров Сергей Яковлевич
RU2723229C2

Иллюстрации к изобретению RU 2 774 636 C1

Реферат патента 2022 года Твердые растворы BiTe-SbTe-SbSe-BiSe n- и p-типов проводимости с повышенной механической прочностью

Изобретение относится к области термоэлектрического преобразования энергии, в частности к термоэлектрическому материалу в виде твердого раствора Bi2Te3-Sb2Te3-Sb2Se3-Bi2Se3, содержащего легирующие добавки. Техническим результатом изобретения является повышение физико-механической прочности. Термоэлектрический материал в виде твердых растворов (Bi2Te3)(15-94)-(Sb2Te3)(60-85)-(Sb2Se3)(0-10)-(Bi2Se3)(5,9-14) содержит легирующую добавку германия в количестве 0,01-0,12 мас. % и легирующую добавку хлора, брома или йода в количестве 0,01-0,19 мас. % или легирующую добавку свинца в количестве 0-0,1 мас. %. 2 н. и 6 з.п. ф-лы, 3 ил., 2 табл.

Формула изобретения RU 2 774 636 C1

1. Термоэлектрический материал, содержащий полупроводниковый материал n-типа в виде твердого раствора (Bi2Te3)a-(Bi2Se3)b, где а=86-94, b=5,9-14, содержащего легирующие добавки, выбранные из группы: германий, хлор, бром, йод.

2. Термоэлектрический материал по п. 1, отличающийся тем, что твердый раствор полупроводникового материала n-типа содержит (Sb2Se3)c, где c=0,1-1.

3. Термоэлектрический материал по любому из пп. 1 или 2, отличающийся тем, что количественное содержание легирующей добавки германия составляет 0,01-0,12 мас. %.

4. Термоэлектрический материал по любому из пп. 1 или 2, отличающийся тем, что количественное содержание легирующей добавки хлора, брома или йода составляет 0,01-0,19 мас. %.

5. Термоэлектрический материал, содержащий полупроводниковый материал p-типа в виде твердого раствора (Bi2Te3)a-(Sb2Te3)b, где а=15-30, b=60-85, содержащего легирующие добавки, выбранные из группы: германий, свинец.

6. Термоэлектрический материал по п. 5, отличающийся тем, что твердый раствор полупроводникового материала p-типа содержит (Sb2Se3)c, где c=0,5-10.

7. Термоэлектрический материал по любому из пп. 5 или 6, отличающийся тем, что количественное содержание легирующей добавки германия составляет 0,01-0,12 мас. %.

8. Термоэлектрический материал по любому из пп. 5 или 6, отличающийся тем, что количественное содержание легирующей добавки свинца составляет 0-0,1 мас. %.

Документы, цитированные в отчете о поиске Патент 2022 года RU2774636C1

ТЕРМОЭЛЕКТРИЧЕСКИЙ НАНОКОМПОЗИТ, СПОСОБ ИЗГОТОВЛЕНИЯ НАНОКОМПОЗИТА И ПРИМЕНЕНИЕ НАНОКОМПОЗИТА 2008
  • Бланк Владимир Давидович
  • Пивоваров Геннадий Иванович
  • Попов Михаил Юрьевич
  • Татьянин Евгений Васильевич
RU2457583C2
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА p-ТИПА НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ BiTe-SbTe 2011
  • Драбкин Игорь Абрамович
  • Каратаев Владимир Викторович
  • Лаврентьев Михаил Геннадьевич
  • Освенский Владимир Борисович
  • Пархоменко Юрий Николаевич
  • Сорокин Александр Игоревич
RU2470414C1
US 9620697 B2, 11.04.2017
WO 2017082558 A1, 18.05.2017
US 7723607 B2, 25.05.2010.

RU 2 774 636 C1

Авторы

Скипидаров Сергей Яковлевич

Курганов Владимир Алексеевич

Даты

2022-06-21Публикация

2021-10-26Подача