Металломатричный композит на основе высокоэнтропийного сплава Российский патент 2023 года по МПК C22C30/00 C22C1/10 C22C32/00 

Описание патента на изобретение RU2793620C1

Настоящее изобретение относится к области металлургии, в частности к получению композиционных материалов с металлической высокоэнтропийной матрицей, упрочненных частицами борида титана. Данное изобретение может быть использовано для конструкционных применений в авиастроении и энергетическом машиностроении, в том числе и при высоких температурах.

Основные проблемы применения современных жаропрочных материалов связаны с необходимостью повышения рабочих температур деталей авиационных и ракетных двигателей выше 600-700°С при одновременном снижении их веса. В настоящее время в авиационном и ракетном двигателестроении наиболее широко применяются интерметаллидные сплавы на основе алюминида титана и никеля. Повышение жаропрочности таких сплавов возможно путем их легирования тугоплавкими элементами. Однако такое легирование приводит к повышению плотности сплавов и снижению их пластичности. Перспективной альтернативой интерметаллидным сплавам являются активно исследуемые в последнее десятилетие так называемые высокоэнтропийные сплавы. Данные сплавы состоят из четырех, пяти и более химических элементов, находящихся в равных или практически равных концентрациях. При этом существующие экспериментальные данные показывают, что высокоэнтропийные сплавы могут обладать высокими эксплуатационными характеристиками, необходимыми для авиационной и ракетной отраслей промышленности.

На данный момент известно несколько вариаций высокоэнтропийных сплавов, наиболее близких по химическому составу к заявленному композиту.

Известен сплав AlNbTiV (Stepanov N.D., Yurchenko N.Yu., Skibin D.V., Tikhonovsky, M.A., Salishchev G.A. Structure and mechanical properties of the AlCrxNbTiV (x= 0, 0.5,1, 1.5) high entropy alloys//Journal of Alloys and Compounds. – 2015. – V.652. – Pp. 266-280). Данный сплав содержит 27,6 ат.% алюминия, 24,1 ат.% ниобия, 24,8 ат.% титана, 23,5 ат.% ванадия. Сплав обладает низкой плотностью около 5,6 г/см3 и достаточной низкотемпературной пластичностью 5,2%. Основным недостатком данного сплава является недостаточно высокий удельный предел текучести при высокой температуре: 100 кПа⋅м3/кг при Т=800°С.

Известен высокоэнтропийный сплав AlNbTiVZr0.5 (Stepanov N.D., Yurchenko N.Yu., Sokolovsky V.S., Tikhonovsy M.A., Salishchev G.A. An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility // Materials letters - 2015. – V.161. – Pp. 136-139). Данный сплав содержит 23,4 ат.% алюминия, 20,9 ат.% ниобия, 22,8 ат.% титана, 21,7 ат.% ванадия и 11,2 ат.% циркония. Сплав обладает низкой плотностью порядка 5,64 г/см3, высокой низкотемпературной пластичностью до 50%, и более высоким удельным пределом текучести при высокой температуре около 120 кПа⋅м3/кг при Т = 800°С. Основными недостатками данного сплава является избыточное содержания циркония в количестве 11,2 ат.%, что повышает его удельный вес и приводит к повышению стоимости сплава, а также низкая величина удельного предела текучести - не более 120 кПа⋅м3/кг при Т = 800°С.

За прототип был выбран высокоэнтропийный сплав Al5Nb24Ti40V5Zr26 (S. Zherebtsov, N. Yurchenko, E. Panina, M. Tikhonovsky, N. Stepanov. Gum-like mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy, Intermetallics 116 (2020) 106652). Данный сплав содержит 5 ат.% алюминия, 24 ат.% ниобия, 40 ат.% титана, 5 ат.% ванадия и 26 ат.% циркония. Основным недостатком данного сплава является недостаточно высокий удельный предел прочности на растяжение при комнатной температуре, равный 800 МПа.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задачей изобретения является получение металломатричного композита на основе высокоэнтропийного сплава Al5Nb24Ti40V5Zr26 с высокими показателями прочности, а также приемлемыми значениями пластичности при комнатной температуре, позволяющими изготавливать детали для применения в авиастроении.

Технический результат изобретения заключается в получении металломатричного композита Al5Nb24Ti40V5Zr26/TiB2 с высокими показателями предела прочности 900 МПа, предела текучести – 840 МПа и пластичностью на растяжение 6 % при комнатной температуре, за счет упрочнения диборидом титана.

Задача изобретения решается предложенным металломатричным композитом Al5Nb24Ti40V5Zr26/TiB2, полученным путем вакуумно-дугового переплава в среде чистого аргона из химических элементов в следующем процентном отношении: 5 ат.% алюминия, 24 ат.% ниобия, 40 ат.% титана, 5 ат.% ванадия и 26 ат.% циркония с добавлением 1 % вес. TiB2 со средним размером частиц 4 мкм.

Отличительной особенностью предложенного композита является его химический состав, неизвестный из уровня техники. Пластичная матрица на основе сплава Al5Nb24Ti40V5Zr26 обеспечивает высокий баланс механических и жаропрочных свойств. Неожиданно было установлено, что введение в состав матрицы 1 % вес. высокотвердого армирующего компонента TiB2 значительно повышает прочностные свойства композита наряду с обеспечением хорошей пластичности на растяжение при комнатной температуре. Новизна и изобретательский уровень предложенного изобретения заключается в легировании высокоэнтропийной матрицы Al5Nb24Ti40V5Zr26 1 % вес. армирующим компонентом TiB2. Чистота элементов, используемых при получении заявленного композита Al5Nb24Ti40V5Zr26/TiB2, приведена в таблице 1.

Таблица 1 – Чистота элементов, используемых при получении заявленного композита Al5Nb24Ti40V5Zr26/TiB2.

Изобретение иллюстрируется следующими материалами:

Фиг. 1 – Изображение микроструктуры композита Al5Nb24Ti40V5Zr26/TiB2, (а) – сканирующая электронная микроскопия, (б) EBSD анализ (ОПФ карта).

Фиг. 2 – Кривые напряжение-деформация, полученные при испытаниях на одноосное растяжение при комнатной температуре образцов исходного сплава Al5Nb24Ti40V5Zr26 и заявленного композита Al5Nb24Ti40V5Zr26/TiB2.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

В качестве исходных материалов используют высокочистые элементы алюминия, ниобия, титана, ванадия, циркония и порошка диборида титана (TiB2) со средним размером частиц 4 мкм. Далее проводят процесс вакуумно-дугового переплава с использованием установки Buehler Arc Melter 200 в среде чистого аргона при рабочей температуре 3500°C в течение 60 минут для получения литого металломатричного композита Al5Nb24Ti40V5Zr26/TiB2.

Возможность осуществления изобретения поясняется примерами технологического процесса получения заявленного композита с высокими значениями прочности и пластичности.

Пример 1.

Для получения композита используют чистые элементы в следующем процентном отношении, ат. %: алюминий 5, ниобий 24, титан 40, ванадий 5, цирконий 26 и 1 % вес. диборида титана TiB2. Размер частиц порошка диборида титана использован со средним размером частиц 4 мкм. Далее проводят процесс вакуумно-дугового переплава на установке Buehler Arc Melter 200 в среде чистого аргона при рабочей температуре 3500°C в течение 60 минут.

Полученные слитки переплавляют 5 раз для получения однородного распределения химических элементов по объему заготовки.

Полученные в итоге слитки имели массу 50 г, пор или каких-либо других дефектов в структуре слитков обнаружено не было.

Пример 2.

Исследования микроструктуры сплава проводили с использованием растрового (сканирующего) электронного микроскопа FEI Quanta 600 FEG (фиг.1). Видно, что полученный композит имеет однофазную ОЦК структуру с равномерным распределением боридов. Средний размер зерен составил 150 мкм.

Механические испытания на растяжение полученного композита Al5Nb24Ti40V5Zr26/TiB2 и для сравнения исходного сплава Al5Nb24Ti40V5Zr26 проводили на универсальной электромеханической испытательной машине Instron 5882 при комнатной температуре (Фиг.2).

Значение предела прочности составило 900 МПа, предела текучести - 840 МПа, пластичность на растяжение 6 %.

Таким образом, поставленная задача достигнута. Полученный металломатричный композит Al5Nb24Ti40V5Zr26/TiB2 имеет высокие показатели предела прочности 900 МПа, предела текучести – 840 МПа и пластичности на растяжение 6 % при комнатной температуре.

Похожие патенты RU2793620C1

название год авторы номер документа
Способ получения упрочненного металломатричного композита на основе среднеэнтропийного сплава 2023
  • Озеров Максим Сергеевич
  • Соколовский Виталий Сергеевич
  • Астахов Илья Иванович
  • Степанов Никита Дмитриевич
  • Жеребцов Сергей Валерьевич
RU2813079C1
Низкомодульный металломатричный композит на основе среднеэнтропийного сплава 2022
  • Озеров Максим Сергеевич
  • Соколовский Виталий Сергеевич
  • Степанов Никита Дмитриевич
  • Жеребцов Сергей Валерьевич
RU2795128C1
Жаропрочный высокоэнтропийный сплав 2016
  • Салищев Геннадий Алексеевич
  • Степанов Никита Дмитриевич
  • Юрченко Никита Юрьевич
  • Астафуров Сергей Владимирович
RU2631066C1
Деформируемый высокоэнтропийный сплав для высокотемпературных применений 2019
  • Юрченко Никита Юрьевич
  • Степанов Никита Дмитриевич
  • Панина Евгения Сергеевна
  • Жеребцов Сергей Валерьевич
  • Салищев Геннадий Алексеевич
RU2696799C1
Биомедицинский высокоэнтропийный сплав 2022
  • Озеров Максим Сергеевич
  • Юрченко Никита Юрьевич
  • Шайсултанов Дмитрий Георгиевич
  • Степанов Никита Дмитриевич
  • Жеребцов Сергей Валерьевич
RU2795150C1
ЖАРОПРОЧНЫЙ СПЛАВ 2013
  • Дуб Алексей Владимирович
  • Баликоев Алан Георгиевич
  • Лебедев Андрей Геннадьевич
  • Ригина Людмила Георгиевна
  • Иванов Иван Алексеевич
  • Корнеев Антон Алексеевич
RU2526657C1
ВЫСОКОЭНТРОПИЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ 2022
  • Дегтярев Александр Фёдорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Дуб Алексей Владимирович
  • Юргина Жанна Владимировна
  • Куликов Анатолий Павлович
  • Ефимов Виктор Михайлович
  • Волобуев Юрий Сергеевич
RU2787332C1
ВЫСОКОЭНТРОПИЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ (ВАРИАНТЫ) 2022
  • Дегтярев Александр Фёдорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Дуб Алексей Владимирович
  • Юргина Жанна Владимировна
  • Куликов Анатолий Павлович
  • Ефимов Виктор Михайлович
  • Волобуев Юрий Сергеевич
RU2804232C1
Способ получения композиционного материала Ti-15Mo/TiB с улучшенными пластическими характеристиками 2020
  • Озеров Максим Сергеевич
  • Соколовский Виталий Сергеевич
  • Степанов Никита Дмитриевич
  • Жеребцов Сергей Валерьевич
RU2733775C1
Способ получения композиционного материала Ti/TiB 2019
  • Озеров Максим Сергеевич
  • Соколовский Виталий Сергеевич
  • Климова Маргарита Викторовна
  • Степанов Никита Дмитриевич
  • Жеребцов Сергей Валерьевич
RU2711699C1

Иллюстрации к изобретению RU 2 793 620 C1

Реферат патента 2023 года Металломатричный композит на основе высокоэнтропийного сплава

Изобретение относится к металломатричным композитам на основе высокоэнтропийного сплава и может быть использовано для конструкционных применений в авиастроении и энергетическом машиностроении, в том числе при высоких температурах. Металломатричный композит Al5Nb24Ti40V5Zr26/TiB2, полученный путем вакуумно-дугового переплава в среде чистого аргона алюминия, ниобия, титана, ванадия, циркония с добавлением TiB2 со средним размером частиц 4 мкм, содержит матрицу из высокоэнтропийного сплава Al5Nb24Ti40V5Zr26 и армирующий компонент TiB2, при этом матричный сплав содержит: 5 ат.% алюминия, 24 ат.% ниобия, 40 ат.% титана, 5 ат.% ванадия и 26 ат.% циркония, а металломатричный композит содержит 1 мас.% TiB2. Изобретение направлено на получение металломатричного композита с высоким пределом прочности, пределом текучести и пластичности на растяжение при комнатной температуре. 2 ил., 1 табл., 2 пр.

Формула изобретения RU 2 793 620 C1

Металломатричный композит Al5Nb24Ti40V5Zr26/TiB2, содержащий матрицу из высокоэнтропийного сплава Al5Nb24Ti40V5Zr26 и армирующий компонент TiB2, полученный путем вакуумно-дугового переплава в среде чистого аргона, алюминия, ниобия, титана, ванадия, циркония с добавлением TiB2 со средним размером частиц 4 мкм, при этом матричный сплав содержит: 5 ат.% алюминия, 24 ат.% ниобия, 40 ат.% титана, 5 ат.% ванадия и 26 ат.% циркония, а металломатричный композит содержит 1 мас.% TiB2.

Документы, цитированные в отчете о поиске Патент 2023 года RU2793620C1

US 20170314097 A1, 02.11.2017
Stepanov N
et al., Gum-like mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy, Journal article, 28.01.2020, intermetallics, т
Способ получения бензидиновых оснований 1921
  • Измаильский В.А.
SU116A1
US 6599466 B1, 29.07.2013
US 4726842 A1, 23.02.1988
US5093148 A1, 03.03.1992.

RU 2 793 620 C1

Авторы

Озеров Максим Сергеевич

Соколовский Виталий Сергеевич

Степанов Никита Дмитриевич

Жеребцов Сергей Валерьевич

Даты

2023-04-04Публикация

2022-07-11Подача