Изобретение относится к области металлургии сплавов, а именно высокоэнтропийных сплавов, которые могут быть использованы для производства элементов и деталей конструкций, работающих в условиях высоких температур в авиационных и ракетных двигателях.
Основные проблемы применения современных жаропрочных материалов связаны с необходимостью повышения рабочих температур деталей авиационных и ракетных двигателей выше 600-700°С при одновременном снижении их веса. В настоящее время в авиационном и ракетном двигателестроении наиболее широко применяются интерметаллидные сплавы на основе алюминида титана и никеля. Повышение жаропрочности таких сплавов возможно путем их легирования тугоплавкими элементами. Однако такое легирование приводит к повышению плотности сплавов и снижению их пластичности.
Перспективной альтернативой интерметаллидным сплавам являются активно исследуемые в последнее десятилетие так называемые высокоэнтропийные сплавы. Данные сплавы состоят из четырех, пяти и более химических элементов, находящихся в равных или практически равных концентрациях. При этом существующие экспериментальные данные показывают, что высокоэнтропийные сплавы могут обладать высокими эксплуатационными характеристиками, необходимыми для авиационной и ракетной отраслей промышленности.
Известен высокоэнтропийный сплав TiVNbZr0,5Al0,25Ta0,1 (патент RU № 2526657 C1, опубл. 27.08.2014). Данный сплав обладает низкой плотностью примерно 6,5 г/см3 и достаточной пластичностью порядка 12% при комнатной температуре.
Недостатками данного сплава являются низкий удельный предел текучести при повышенных температурах не более 100⋅кПа⋅м3/кг при Т = 700°С, а также высокая стоимость одного из компонентов - тантала.
Известен другой высокоэнтропийный сплав - CrNbTiVZr (Senkov O.N., Senkova S.V., Miracle D.B., Woodward C. Mechanical properties of low-density, refractory multi-principal element alloys of the CrNbTiVZr system // Materials Science and Engineering A. - 2013. – V.565. – Pp. 51-62). Данный сплав обладает высокой прочностью при повышенных температурах.
Недостатком данного сплава является ограниченная низкотемпературная пластичность около 3% и высокая плотность 6,57 г/см3.
Известен сплав AlNbTiV (Stepanov N.D., Yurchenko N.Yu., Skibin D.V., Tikhonovsky M.A., Salishchev G.A. Structure and mechanical properties of the AlCrxNbTiV (x= 0, 0.5, 1, 1.5) high entropy alloys//Journal of Alloys and Compounds. – 2015. – V.652. – Pp. 266-280). Данный сплав содержит 27,6 ат.% алюминия, 24,1 ат.% ниобия, 24,8 ат.% титана, 23,5 ат.% ванадия. Сплав обладает низкой плотностью около 5,6 г/см3 и достаточной низкотемпературной пластичностью 5,2%.
Основным недостатком данного сплава является недостаточно высокий удельный предел текучести при высокой температуре: 100 кПа⋅м3/кг при Т=800°С.
Наиболее близким аналогом, выбранным за прототип, является высокоэнтропийный сплав AlNbTiVZr0.5 (Stepanov N.D., Yurchenko N.Yu., Sokolovsky V.S., Tikhonovsy M.A., Salishchev G.A. An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility // Materials letters - 2015. – V.161. – Pp. 136-139). Данный сплав содержит 23,4 ат.% алюминия, 20,9 ат.% ниобия, 22,8 ат.% титана, 21,7 ат.% ванадия и 11,2 ат.% циркония. Сплав обладает низкой плотностью порядка 5,64 г/см3 и высокой низкотемпературной пластичностью до 50% и более высоким удельным пределом текучести при высокой температуре около 120 кПа⋅м3/кг при Т = 800°С.
Основными недостатками данного сплава является избыточное содержания циркония в количестве 11,2 ат.%, что повышает его удельный вес и приводит к повышению стоимости сплава, а также низкая величина удельного предела текучести - не более 120 кПа⋅м3/кг при Т = 800°С.
Технической задачей изобретения является создание жаропрочного сплава с высокими удельными прочностными характеристиками при высокой температуре, обладающего низкой плотностью и достаточной пластичностью при комнатной температуре.
Технический результат - высокие удельные прочностные характеристики предложенного сплава более 150 кПа⋅м3/кг при Т = 800°С, с низкой плотностью меньше 6 г/см3 и достаточной пластичностью при комнатной температуре не менее 3%.
Технический результат достигается путем предложенного жаропрочного сплава AlNbTiVZrх, где х принимает значения от 0,1 до 0,25, при следующем содержании компонентов (ат.%):
Использование циркония в качестве легирующего элемента сплава AlNbTiV, имеющего однофазную зеренную структуру на основе объемно-центрированной кубической решетки, обусловлено тем, что цирконий обладает большим радиусом атома r = 159 пм, по сравнению с компонентами исходного сплава AlNbTiV, а также сильным химическим сродством с алюминием: энтальпия смешения ΔHсмеш=−43,7 кДж/моль. Большая разница между атомными радиусами элементов приводит к сильным внутренним искажениям, т.е. к твердорастворному упрочнению, а химическое сродство с алюминием – к образованию дисперсных частиц интерметаллидных фаз, способствующих дополнительному увеличению жаропрочности без катастрофического уменьшения пластичности. Неожиданно установлено, что введение циркония в количестве 3,3-6,7 ат.% положительно влияет на повышение прочностных характеристик сплава AlNbTiVZrх, где х принимает значения от 0,1 до 0,25, при высоких температурах в диапазоне 166-174 кПа⋅м3/кг при Т = 800°С, при сохранении низкой плотности меньше 6 г/см3 и достаточной пластичности при комнатной температуре не менее 3%. При этом снижается удельный вес сплава и, соответственно, его стоимость.
Изобретение характеризуется изображениями, представленными на фигурах:
фиг. 1. Микроструктура сплава AlNbTiVZr0,1, полученная с использованием растрового электронного микроскопа Quanta 600 FEG;
фиг. 2. Микроструктура сплава AlNbTiVZr0,25, полученная с использованием растрового электронного микроскопа Quanta 600 FEG;
фиг. 3. Таблица 1. Химический состав и плотность сплавов по изобретению;
фиг. 4. Таблица 2. Характеристики сплавов по изобретению.
В качестве примеров изобретения можно рассмотреть сплавы AlNbTiVZr0,1 и AlNbTiVZr0,25.
Сплавы по изобретению AlNbTiVZr0,1 и AlNbTiVZr0,25 были изготовлены методом вакуумно-дугового переплава.
Сплавление высокочистых (≥99,9 ат.%) шихтовых материалов, взятых в концентрациях Al (25,7 ат.%), Nb (23,6 ат.%), Ti (24,6 ат.%), V (22,8 ат.%), Zr (3,3 ат.%), для сплава AlNbTiVZr0,1,и Al (25,0 ат.%), Nb (22,4 ат.%), Ti (24,0 ат.%), V (21,9 ат.%), Zr (6,7 ат.%), для сплава AlNbTiVZr0,25, осуществляли в среде аргона в водоохлаждаемой медной изложнице. Время поддержания расплава в жидком состоянии - не более 20 секунд. Полученные слитки переплавляли 5 раз для получения однородного распределения элементов по объему.
Для гомогенизации структуры после последнего переплава слитки подвергали отжигу при температуре 1200°С в течение 24 часов в муфельной печи. Для предотвращения окисления сплава в процессе отжига слитки предварительно запаивали в кварцевую трубку с давлением ~1,3 Па.
Полученные слитки весом 0,1 кг имели чистую, блестящую поверхность. Проведенный химический анализ слитков показал их гомогенность по основным элементам и соответствие химического состава сплавов заданному.
Из слитков электроэрозионным методом были вырезаны образцы. При производстве образцов сплавы демонстрировали высокую обрабатываемость. При этом при резании в материале отсутствовали макродефекты структуры (раковины, трещины, поры).
Полученные образцы сплавов были использованы для проведения испытаний по определению механических свойств на одноосное сжатие и проведения микроструктурных исследований.
Проведенные структурные исследования показали, что сплавы по изобретению AlNbTiVZr0,1 и AlNbTiVZr0,25 обладают зеренной структурой на основе ОЦК решетки с дисперсными частицами фазы, обогащенной алюминием и цирконием (фиг. 1 и фиг. 2).
Сравнение полученных сплавов с известным сплавом AlNbTiV и прототипом AlNbTiVZr0,5 (таблица 1 на фиг. 3 и таблица 2 на фиг. 4) показало, что они обладают низкой плотностью расплава=5,52-5,56 г/см3, сравнимой и более высокой пластичностью при сжатии при комнатной температуре 3,7-9,3%, а также высоким удельным пределом текучести: УПТх=σ0,2/ρ сплава, где σ0,2 – предел текучести при сжатии в температурном интервале от 22 до 800°С, х – температура:
УПТ22 = 245-254⋅кПа⋅м3/кг,
УПТ600 = 211-217⋅кПа⋅м3/кг,
УПТ800 = 166-174⋅кПа⋅м3/кг.
Таким образом, заявленный технический результат - высокий удельный предел текучести предложенного сплава 166-174 кПа⋅м3/кг при Т = 800°С, с низкой плотностью меньше 6 г/см3 и достаточной пластичностью при комнатной температуре не менее 3%, достигнут.
название | год | авторы | номер документа |
---|---|---|---|
ВЫСОКОЭНТРОПИЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ | 2022 |
|
RU2787332C1 |
Металломатричный композит на основе высокоэнтропийного сплава | 2022 |
|
RU2793620C1 |
ВЫСОКОЭНТРОПИЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ (ВАРИАНТЫ) | 2022 |
|
RU2804232C1 |
Деформируемый высокоэнтропийный сплав для высокотемпературных применений | 2019 |
|
RU2696799C1 |
ЖАРОПРОЧНЫЙ СПЛАВ | 2013 |
|
RU2526657C1 |
Биомедицинский высокоэнтропийный сплав | 2022 |
|
RU2795150C1 |
Способ получения упрочненного металломатричного композита на основе среднеэнтропийного сплава | 2023 |
|
RU2813079C1 |
Тугоплавкий высокоэнтропийный сплав c ОЦК-B2 структурой | 2022 |
|
RU2786768C1 |
Низкомодульный металломатричный композит на основе среднеэнтропийного сплава | 2022 |
|
RU2795128C1 |
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2015 |
|
RU2606368C1 |
Изобретение относится к жаропрочным высокоэнтропийным сплавам и может быть использовано для производства элементов и деталей конструкций, работающих в условиях высоких температур в авиационных и ракетных двигателях. Сплав AlNbTiVZrх, где х принимает значения от 0,1 до 0,25, имеет следующее соотношение компонентов, ат.%: 24-24,6 титана, 22,4-23,6 ниобия, 21,9-22,8 ванадия, 3,3-6,7 циркония, остальное - алюминий. Изобретение направлено на получение сплава с удельным пределом текучести 166-174 кПа⋅м3/кг при Т = 800°С, низкой плотностью меньше 6 г/см3 и пластичностью при комнатной температуре не менее 3%. 4 ил.
Жаропрочный высокоэнтропийный сплав AlNbTiVZrх, характеризующийся тем, что имеет следующее соотношение компонентов, ат.%: титан 24-24,6, ниобий 22,4-23,6, ванадий 21,9-22,8, цирконий 3,3-6,7, остальное – алюминий, при этом х принимает значения от 0,1 до 0,25.
Stepanov V.S | |||
et al | |||
An AlNbTiVZr0,5 high-entropy alloy combining high spesific strength and good ductility, Materials letter, 2015, v.161, p.136-139 | |||
Двухзвенное транспортное средство | 1985 |
|
SU1298127A1 |
US 5183635 A1, 02.02.1993 | |||
ЖАРОПРОЧНЫЙ СПЛАВ | 2013 |
|
RU2526657C1 |
US 6071470 A, 06.06.2000. |
Авторы
Даты
2017-09-18—Публикация
2016-10-27—Подача