Изобретение относится к литейному производству, а именно, к изготовлению литейных форм и стержней из песчаных смесей на жидкостекольном связующем, отверждаемых продувкой углекислым газом.
Формовочные и стержневые песчаные смеси на жидкостекольном связующем широко применяются в литейном производстве. Однако эти смеси имеют существенные недостатки. Среди них малая сырая (манипуляторная) прочность, осыпаемость после сушки и плохая выбиваемость из отливок, обусловленная высокой остаточной прочностью. Для устранения этих недостатков в смесь вводят различные органические и неорганические добавки.
Использование в составе песчаных смесей на жидкостекольном связующем органических добавок способствует снижению остаточной прочности стержней, а значит улучшению их выбиваемости.
Например, известна смесь, содержащая 3,0-6,0%, масс. жидкого стекла, 1,0-3,0%, масс. шламовых отходов химической очистки стальных изделий, 0,5-1,0% масс. едкого натра и огнеупорный наполнитель на основе диоксида кремния [1]. При выгорании органической масляной добавки, входящей в состав шламовых отходов химической очистки стальных изделий, выделяются газы, давление которых разрушает плёнки связующего, тем самым способствуя разупрочнению смеси. Главными недостатками этой смеси являются достаточно высокая остаточная прочность и то, что при выгорании масляной добавки выделяются вредные токсичные газы, загрязняющие атмосферу заливочного и выбивного участков литейного цеха.
Известно, что включение в состав песчаной смеси на жидкостекольном связующем неорганических добавок не приводит к выделению вредных газов при заливке формы расплавом [2]. При этом введение таких добавок в малых количествах не оказывает значительного разупрочняющего эффекта, а повышение их содержания в составе смеси приводит к снижению прочностных свойств стержня.
Например, известна смесь, содержащая 6,0-6,5%, масс. жидкого стекла, 8,0-11,0 %, масс. глины, прокаленной при температуре 800°С, 1,25-1,5%, масс. едкого натра и кварцевый песок в качестве огнеупорной основы [3]. К недостаткам данной смеси относятся значительная осыпаемость и высокая остаточная прочность.
Наиболее близкой к изобретению по физико-химическому составу и достигаемому техническому результату является смесь, состоящая из 5,0-14,0%, масс. жидкого стекла, 7,0-26,0%, масс. отхода керамических изделий, содержащих глину, и кварцевого песка в качестве огнеупорной основы [4].
Данная смесь обладает высокими прочностными свойствами только при большом процентном содержании в ней жидкого стекла и отхода производства керамических изделий. При этом остаточная прочность смеси очень высока (>2 МПа) и, как следствие, такая смесь плохо выбивается из отливок. Смесь с относительно низким процентным содержанием жидкого стекла и отхода производства керамических изделий обладает низкой прочностью на сжатие во влажном состоянии, высокой осыпаемостью после сушки и недостаточной выбиваемостью.
Кроме того стержни, изготовленные из смеси-прототипа, необходимо просушивать при температуре 180-220°С в течение продолжительного времени, что также является недостатком.
Эти недостатки устраняются предлагаемым решением.
Решается задача улучшения технологичности смеси.
Технический результат – получение смеси для изготовления литейных форм и стержней на жидкостекольном связующем, обладающей пониженной осыпаемостью и малой остаточной прочностью.
Технический результат достигается тем, что смесь для изготовления форм и стержней, содержащая жидкое стекло и кварцевый песок, согласно изобретению дополнительно содержит в своём составе формовочную глину, измельчённые отходы силиконовых резин и водный раствор поливинилового спирта при следующем соотношении ингредиентов, масс.%:
Сущность изобретения состоит в следующем.
Жидкое стекло вводится в смесь в качестве связующего в количестве 5,0-6,0%, масс. При содержании в смеси жидкого стекла в количестве, меньшем 5,0%, снижается прочность стержня в отверждённом состоянии на сжатие и на разрыв и растёт осыпаемость, а при содержании, большем 6,0%, значительно ухудшается выбиваемость. Это подтверждается проведёнными предварительными испытаниями (табл. 1).
Формовочная глина добавляется в состав смеси в количестве 3,0-5,0%, масс. для повышения сырой (манипуляторной) прочности стержня. Нижний предел содержания глины обусловлен тем, что меньшее количество не обеспечивает значительного прироста сырой прочности. Верхний предел ограничен 5,0%, масс., потому что при большем содержании глины снижается прочность стержня в упрочнённом (отверждённом) состоянии. Это подтверждается проведёнными предварительными испытаниями (табл. 2).
Отходы силиконовых резин представляют собой изношенные и выведенные из эксплуатации формы, использовавшиеся для изготовления изделий из полиуретанов, искусственного декоративного камня, литья низкотемпературных металлов и сплавов, а также отходы, образующиеся в процессе производства силиконовых форм. Они включены в федеральный классификационный каталог отходов («Отходы силикона при изготовлении силиконовых форм» №33577111204).
В заявляемом изобретении предлагается измельчать данные отходы и использовать их в качестве разупрочняющей добавки для формовочных и стержневых песчаных смесей на жидкостекольном связующем. Измельчение и рассев для получения определённой фракции могут быть осуществлены с помощью режущей мельницы.
Частицы измельчённых отходов силиконовых резин, равномерно распределённые в составе жидкостекольной смеси, при прогреве формы или стержня до температур выше 300°С разлагаются с образованием аморфного диоксида кремния и углекислого газа, который, в свою очередь, разрушает плёнки связующего на поверхности зёрен огнеупорной основы – кварцевого песка, способствуя тем самым снижению остаточной прочности стержня и улучшению его выбиваемости.
Нижний предел содержания добавки измельчённых отходов силиконовых резин (1,5%, масс.) обусловлен тем, что меньшее количество не обеспечивает значительного разупрочняющего эффекта (табл. 3). Содержание добавки измельчённых отходов силиконовых резин в составе смеси в количестве большем, чем 2,0%, масс., приводит к увеличению газотворности смеси и, как следствие, к появлению в отливках дефекта – газовой пористости.
Чем меньше размер частиц измельчённых отходов силиконовых резин, тем более равномерно они распределяются в массе стержня и тем интенсивнее происходит разупрочнение (табл. 4). Однако процесс получения частиц мелкой фракции (<0,3 мм) очень длителен и экономически не выгоден. Использование частиц измельчённых отходов силиконовых резин размером более 0,5 мм приводит к ухудшению качества поверхности стержня из-за его осыпаемости.
Для снижения осыпаемости и повышения поверхностной прочности в смесь добавляется водный 4,0-8,0%-ный раствор поливинилового спирта.
Раствор поливинилового спирта частично обволакивает зёрна песка и добавку измельчённых отходов силиконовых резин, образуя на их поверхности в процессе высыхания эластичную плёнку, упрочняющую поверхностный слой формы или стержня.
На основе предварительно проведённых испытаний для введения поливинилового спирта в смесь выбрана концентрация – 4,0-8,0%, масс. При концентрации менее 4,0%, масс. увеличивается прилипаемость стержня к оснастке из-за повышенного содержания воды в смеси. Применение раствора с концентрацией более 8,0%, масс. нецелесообразно из-за повышения его вязкости и, как следствие, снижения равномерности распределения в стержневой смеси.
Нижний предел содержания водного раствора поливинилового спирта (0,5 масс. %) обусловлен тем, что меньшее количество не обеспечивает значительного снижения осыпаемости смеси (табл. 5). Содержание раствора поливинилового спирта выше 1,5 масс. % приводит к росту газотворности смеси и образованию в отливках газовой пористости.
Пример.
Для сравнения были изготовлены образцы из предлагаемого состава и из известной смеси – прототипа [4]. Состав смесей и физико-механические свойства приведены в табл. 5.
Для приготовления смеси были использованы следующие материалы: стекло натриевое жидкое с модулем 2,6, плотностью 1,47 г/см3 (ГОСТ 13078-81); песок кварцевый 2К1О202 (ГОСТ 2138-91); глина формовочная П3 (ГОСТ 3226-93); измельчённые отходы силиконовых резин; водный 4-8%-ный раствор поливинилового спирта марки ПВС, 6/1 1 сорт ГОСТ 10779-78.
Стержневая смесь приготавливалась следующим образом.
В смеситель модели 02113 загружали кварцевый песок, глину, измельчённые отходы силиконовых резин, предварительно подготовленные с помощью режущей мельницы модели Retsch SM100, и перемешивали в течение 3 минут. Затем вводили в смесь жидкое стекло и перемешивали в течение 5 минут. Далее вводили в смесь водный раствор поливинилового спирта и окончательно перемешивали в течение 3 минут.
Свойства смеси оценивались на стандартных образцах. Образцы продували углекислым газом в течение 60 секунд при расходе 30 дм3/мин и давлении 0,1 МПа.
Испытания образцов на прочность (на сжатие и на разрыв) проводились по ГОСТ 23409.7-78. Испытания образцов на газопроницаемость проводились по ГОСТ 23409.6-78. Испытания образцов на осыпаемость проводились по ГОСТ 23409.9-78.
Для определения остаточной прочности образцы предварительно нагревали до 800°С в течение одного часа (так же как в патенте на изобретение, взятом за прототип), затем охлаждали на воздухе до 20°С и далее испытывали по методике (ГОСТ 23409.7-78). Таким образом, осуществлялась имитация прогрева стержневой смеси при воздействии на неё тепла затвердевающего металла. При температуре 800°С в жидкостекольной смеси образуется легкоплавкая двойная эвтектика, состоящая из 21,6% Na2O и 73% SiO2, под воздействием которой после охлаждения зёрна песка цементируются в монолитную массу [5]. Этот случай является наихудшим с точки зрения выбивки стержней из отливок.
Поскольку одна из задач заявляемого изобретения – улучшение выбиваемости стержней из отливок, то для сравнения был принят пример №2 с самой низкой остаточной прочностью, приведённый в описании изобретения-прототипа.
Из табл. 5 видно, что предлагаемая смесь (составы №3, №4 и №5) по сравнению с прототипом имеет более высокие физико-механические свойства. Газопроницаемость смеси-прототипа выше, чем у заявляемой смеси, однако, уровень газопроницаемости предлагаемых составов смеси достаточно высок (порядка 200 ед.) и вполне достаточен для обеспечения качества отливок по дефектам газовой природы [6]. При этом у предлагаемой смеси осыпаемость ниже в 1,4-5 раз, а остаточная прочность ниже в 2 раза по сравнению с прототипом.
Таким образом, технологичность смеси повышается. Кроме того, использование измельчённых отходов силиконовых резин способствует уменьшению загрязнения окружающей среды, поскольку в промышленных масштабах эти отходы в настоящее время не перерабатываются (вывозятся в отвал на полигоны).
Источники информации
1. Авторское свидетельство СССР №1685586, кл. В22С 1/02, опубл. 23.10.1991.
2. Литейные формовочные материалы. Формовочные, стержневые смеси и покрытия: справочник/ А.Н. Болдин, Н.И. Давыдов, С.С. Жуковский и др. М.: Машиностроение, 2006. 507 с.
3. Авторское свидетельство СССР №366028, кл. В22С 1/00, С04В 35/14,опубл. 16.01.1973.
4. Патент РФ №2224619, кл. В22С 1/18, опубл. 27.02.2004.
5. Сварика А.А. Формовочные материалы и смеси: справочник. К.: Техника, 1983. 144 с.
6. Медведев Я.И., Валисовский И.В. Технологические испытания формовочных материалов / Я.И. Медведев, И.В. Валисовский. М.: Машиностроение, 1973. 312 с.
Таблица 1
п/п
Таблица 2
п/п
Таблица 3
п/п
Таблица 4
п/п
Таблица 5
п/п
(прототип)
** Для смеси-прототипа предел прочности на разрыв в сухом состоянии означает предел прочности на разрыв образцов после сушки. Для заявляемой смеси – это предел прочности на разрыв после продувки углекислым газом или выдержки на воздухе в течение 2-3 часов.
название | год | авторы | номер документа |
---|---|---|---|
Смесь для изготовления литейных форм и стержней и способ её приготовления | 2023 |
|
RU2813028C1 |
ПРИМЕНЕНИЕ ОТРАБОТАННОЙ КОФЕЙНОЙ ГУЩИ В КАЧЕСТВЕ РАЗУПРОЧНЯЮЩЕЙ ТЕХНОЛОГИЧЕСКОЙ ДОБАВКИ ДЛЯ ИЗГОТОВЛЕНИЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ ИЗ ПЕСЧАНЫХ СМЕСЕЙ НА ЖИДКОСТЕКОЛЬНОМ СВЯЗУЮЩЕМ | 2023 |
|
RU2820856C1 |
СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ | 2023 |
|
RU2820616C1 |
СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ | 2010 |
|
RU2425732C1 |
СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ | 2009 |
|
RU2405648C1 |
ПРОТИВОПРИГАРНАЯ СМЕСЬ ДЛЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ | 2002 |
|
RU2207215C1 |
ПРОТИВОПРИГАРНАЯ СМЕСЬ ДЛЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ | 2002 |
|
RU2207214C1 |
Способ изготовления литейных стержней и форм | 2021 |
|
RU2763701C1 |
СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ | 1999 |
|
RU2148464C1 |
Смесь для изготовления литейных форм и стержней | 2019 |
|
RU2703637C1 |
Изобретение относится к области литейного производства. Смесь для изготовления литейных форм и стержней содержит, мас.%: 5-6 жидкого стекла, 3-5 формовочной глины, 1,5-2,0 измельчённых отходов силиконовых резин, 0,5-1,5 водного 4-8%-ного раствора поливинилового спирта и кварцевый песок – остальное. Раствор поливинилового спирта частично обволакивает зерна песка и измельченные отходы силиконовых резин с образованием на их поверхности в процессе высыхания эластичной пленки, упрочняющей поверхностный слой формы. Частицы измельченных отходов силиконовых резин, равномерно распределенные в составе жидкостекольной смеси, при прогреве формы разлагаются с образованием аморфного диоксида кремния и углекислого газа, который разрушает пленки связующего на поверхности зерен кварцевого песка. Обеспечивается снижение осыпаемости и остаточной прочности смеси и улучшение выбиваемости формы и стержня. 1 з.п. ф-лы, 5 табл., 1 пр.
1. Смесь для изготовления литейных форм и стержней, содержащая жидкое стекло и кварцевый песок, отличающаяся тем, что она дополнительно содержит формовочную глину, а также добавку измельчённых отходов силиконовых резин и водный 4-8%-ный раствор поливинилового спирта, при следующем соотношении компонентов, мас.%:
2. Смесь по п. 1, отличающаяся тем, что размер частиц измельчённых отходов силиконовых резин составляет 0,3-0,5 мм.
СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ | 2002 |
|
RU2224619C1 |
Противопригарное покрытие для газифицируемых литейных моделей | 1986 |
|
SU1404153A1 |
RU 2058211 C1, 20.04.1996 | |||
DE 2909107 А1, 13.09.1979 | |||
Смесь для изготовления литейных форм и стержней в нагреваемой оснастке | 1989 |
|
SU1620203A1 |
МНОГОШОМПОЛЬНАЯ ПАПИРОСО-НАБИВНАЯ МАШИНА | 1925 |
|
SU3315A1 |
WO 2017075337 A1, 04.05.2017. |
Авторы
Даты
2023-04-04—Публикация
2022-12-12—Подача