GAS-SENSITIVE MULTI-SENSOR CHIP Russian patent published in 2024 - IPC G01N27/12 B82Y40/00 

Abstract RU 2826808 C1

FIELD: measuring.

SUBSTANCE: invention can be used for selective detection of gases. Method of manufacturing a gas analytical multisensor chip, including a dielectric substrate, on the front side of which a set of meander heaters is applied, a dielectric heat-transfer passivating layer of polycrystalline SiC, a set of coplanar interdigital electrodes made of a noble metal, for example, from platinum group metals, a nanostructured zinc oxide layer with a developed relief and thin-film thermistors coated with a passivating low-dimensional layer of SiO2, wherein heat-transfer passivating layer of polycrystalline SiC is produced by low-temperature magnetron sputtering, the first seed layer of zinc oxide is applied by magnetron or thermal vacuum sputtering with annealing in vacuum and air at temperatures of at least 300 °C, second structured functional layer of ZnO is obtained by immersing a substrate with a nucleating layer in a solution containing zinc cations and hydroxide ions in equal proportions, and held at temperatures of 75–95 °C for 30–180 minutes; substrate with formed zinc oxide nanorods is washed with distilled water, dried at room temperature and annealed for 15–30 minutes at temperature 400–550 °C with subsequent passivation with low-dimensional layer of dielectric from SiO2.

EFFECT: invention provides the possibility of faster operation and longer service life at low cost of the gas-sensitive multi-sensor chip to vapours of detected gases, the ability of the sensor to function effectively at temperature of 400 °C.

4 cl, 3 dwg

Similar patents RU2826808C1

Title Year Author Number
METHOD OF PRODUCING GAS-ANALYTICAL MULTI-SENSOR CHIP BASED ON ZINC OXIDE NANORODS 2019
  • Bobkov Anton Alekseevich
  • Varezhnikov Aleksej Sergeevich
  • Moshchnikov Vyacheslav Alekseevich
  • Sysoev Viktor Vladimirovich
  • Plugin Ilya Anatolevich
RU2732800C1
ANALYTICAL GAS MULTISENSOR CHIP BASED ON ZnO AND METHOD FOR ITS MANUFACTURING BASED ON SOL-GEL TECHNOLOGY 2022
  • Varezhnikov Aleksei Sergeevich
  • Karmanov Andrei Andreevich
  • Plugin Ilia Anatolevich
  • Pronin Igor Aleksandrovich
  • Sysoev Viktor Vladimirovich
  • Iakushova Nadezhda Dmitrievna
RU2795666C1
CHEMORESISTIVE GAS SENSOR AND METHOD FOR ITS MANUFACTURE 2023
  • Nalimova Svetlana Sergeevna
  • Gagarina Alena Iurevna
  • Spivak Iuliia Mikhailovna
  • Bobkov Anton Alekseevich
  • Kondratev Valerii Mikhailovich
  • Bolshakov Aleksei Dmitrievich
  • Moshnikov Viacheslav Alekseevich
RU2806670C1
MULTIOXIDE GAS-ANALYTIC CHIP AND METHOD FOR PRODUCTION THEREOF BY ELECTROCHEMICAL METHOD 2018
  • Fedorov Fedor Sergeevich
  • Solomatin Maksim Andreevich
  • Sysoev Viktor Vladimirovich
  • Ushakov Nikolaj Mikhajlovich
  • Vasilkov Mikhail Yurevich
RU2684426C1
Gas sensor and gas analysis multisensor chip based on graphene functionalized with carbonyl groups 2020
  • Rabchinskij Maksim Konstantinovich
  • Varezhnikov Aleksej Sergeevich
  • Ryzhkov Sergej Aleksandrovich
  • Bajdakova Marina Vladimirovna
  • Shnitov Vladimir Viktorovich
  • Brunkov Pavel Nikolaevich
  • Solomatin Maksim Andreevich
  • Emelyanov Aleksej Vladimirovich
  • Sysoev Viktor Vladimirovich
RU2745636C1
GAS DETECTOR BASED ON AMINATED GRAPHEN AND METAL OXIDE NANOPARTICLES AND METHOD FOR ITS MANUFACTURE 2021
  • Rabchinskii Maksim Konstantinovich
  • Varezhnikov Aleksei Sergeevich
  • Sysoev Viktor Vladimirovich
  • Struchkov Nikolai Sergeevich
  • Stoliarova Dina Iurevna
  • Solomatin Maksim Andreevich
  • Antonov Grigorii Alekseevich
  • Ryzhkov Sergei Aleksandrovich
  • Pavlov Sergei Igorevich
  • Kirilenko Demid Aleksandrovich
RU2776335C1
GAS DETECTOR BASED ON AMINATED GRAPHENE AND METHOD FOR ITS MANUFACTURE 2021
  • Rabchinskii Maksim Konstantinovich
  • Varezhnikov Aleksei Sergeevich
  • Sysoev Viktor Vladimirovich
  • Ryzhkov Sergei Aleksandrovich
  • Stoliarova Dina Iurevna
  • Ulin Nikolai Vladimirovich
  • Solomatin Maksim Andreevich
  • Savelev Sviatoslav Daniilovich
  • Pavlov Sergei Igorevich
  • Brunkov Pavel Nikolaevich
RU2753185C1
GAS ANALYSIS MULTI-SENSOR CHIP BASED ON GRAPHENE AND METHOD OF ITS MANUFACTURING 2021
  • Rabchinskij Maksim Konstantinovich
  • Varezhnikov Aleksej Sergeevich
  • Sysoev Viktor Vladimirovich
  • Ryzhkov Sergej Aleksandrovich
  • Stolyarova Dina Yurevna
  • Solomatin Maksim Andreevich
  • Savelev Stanislav Daniilovich
  • Kirilenko Demid Aleksandrovich
  • Struchkov Nikolaj Sergeevich
  • Brunkov Pavel Nikolaevich
  • Pavlov Sergej Igorevich
RU2775201C1
GAS ANALYTICAL MULTISENSOR CHIP BASED ON PHOSPHORYLATED GRAPHENE AND METHOD FOR ITS MANUFACTURE 2023
  • Rabchinskij Maksim Konstantinovich
  • Sysoev Viktor Vladimirovich
  • Ryzhkov Sergej Aleksandrovich
  • Struchkov Nikolaj Sergeevich
  • Solomatin Maksim Andreevich
  • Varezhnikov Aleksej Sergeevich
  • Savelev Svyatoslav Daniilovich
  • Gabrelyan Vladimir Sasunovich
  • Stolyarova Dina Yurevna
  • Kirilenko Demid Aleksandrovich
  • Saksonov Aleksandr Aleksandrovich
  • Pavlov Sergej Igorevich
  • Brunkov Pavel Nikolaevich
RU2814054C1
GAS ANALYTICAL MULTISENSOR CHIP BASED ON GRAPHENE MODIFIED WITH NOBLE METAL NANOPARTICLES, AND METHOD OF ITS PRODUCTION 2023
  • Rabchinskij Maksim Konstantinovich
  • Sysoev Viktor Vladimirovich
  • Ryzhkov Sergej Aleksandrovich
  • Struchkov Nikolaj Sergeevich
  • Solomatin Maksim Andreevich
  • Varezhnikov Aleksej Sergeevich
  • Chervyakova Polina Demidovna
  • Gabrelyan Vladimir Sasunovich
  • Stolyarova Dina Yurevna
  • Polukeeva Anna Vladimirovna
  • Kirilenko Demid Aleksandrovich
  • Bajdakova Marina Vladimirovna
  • Petukhov Vladimir Aleksandrovich
  • Pavlov Sergej Igorevich
  • Brunkov Pavel Nikolaevich
RU2814586C1

RU 2 826 808 C1

Authors

Shepeleva Anastasiia Eduardovna

Novichkov Maksim Dmitrievich

Gurin Sergei Aleksandrovich

Pecherskaia Ekaterina Anatolevna

Dates

2024-09-17Published

2024-03-19Filed