Область техники, к которой относится изобретение. Изобретение относится к области биотехнологии, молекулярно-генетической диагностики, в частности к оценке однонуклеотидного полиморфизма rs1043618 (G>С) гена HSPA1A молекулярно-генетическим методом исследования.
Уровень техники. Ген HSPA1A кодирует белок теплового шока массой 70 кДа, который является членом семейства белков теплового шока 70. В сочетании с другими белками теплового шока этот белок стабилизирует существующие белки против агрегации и опосредует сворачивание вновь транслированных белков в цитозоле и органеллах. Он также участвует в пути убиквитин-протеасома посредством взаимодействия с РНК-связывающим белком 1, богатым AU-элементом. [https://www.genecards.org/cgi-bin/carddisp.pl?gene=HSPA1A&keywords=HSPA1A].
Ген HSPA1A (Gene ID: 3303) локализован на хромосоме
6p21.33. Согласно SNPinfo Web Server/ LD TAG SNP Selection [https://snpinfo.niehs.nih.gov/snpinfo/snptag.html] полиморфный вариант rs1043618 (G>A,C,T) гена HSPA1A является таргетным (то есть репрезентативным однонуклеотидным полиморфизмом в геномной области с высокой степенью неравновесия по сцеплению с группами других полиморфных локусов, составляющих гаплотип). Однако, аллели А и Т встречаются в европейских популяциях с частотой <0.000001 и также являются редкими в других популяциях мира, в связи с чем именно замена G>C является актуальной для изучения многофакторных болезней человека.
SNP rs1043618, позиция chr6:31815730 (GRCh38.p14) [https://www.ncbi.nlm.nih.gov/snp/rs1043618] представляет собой вариант, локализованный в 5′-нетранслируемой области. SNP rs1043618 отличается высокой функциональной значимостью. Согласно биоинформатическому ресурсу GTEx Portal, данный генетический вариант влияет на экспрессию широкого спектра генов - ABHD16A, APOM, ATF6B, BAG6, C4A, C4B, C6orf15, C6orf48, CCHCR1, CLIC1, CYP21A1P, CYP21A2, DDAH2, EHMT2, HCG22, HCP5, HLA-B, HLA-C, HLA-DQA2, HLA-DQB1, HLA-DQB1-AS1, HLA-DQB2, HLA-DRB5, HSPA1A, HSPA1L, LINC00243, LY6G5B, LY6G5C, LY6G6E, LY6G6F, MICB, MPIG6B, NEU1, NOTCH4, PBX2, PRRC2A, RNF5, SKIV2L, SLC44A4, STK19, STK19B, UQCRHP1, VARS, VARS2, VWA7, XXbac-BPG248L24.10, XXbac-BPG27H4.8, ZBTB12 в различных органах и тканях посредством eQTL-эффектов [https://gtexportal.org/home/snp/rs1043618].
Кроме того, обнаружена значительная связь rs1043618 с модификациями гистонов, маркирующими промоторы и энхансеры в большинстве тканей и органов человека [https://pubs.broadinstitute.org/mammals/haploreg/detail_v4.2.php?query=&id=rs1043618]; влияние данного генетического варианта на связывание с транскрипционными факторами [http://atsnp.biostat.wisc.edu/search]. Это создает потребность в создании простого в исполнении, недорого и доступного исследователям, работающим в области генетической эпидемиологии, метода идентификации однонуклеотидного полиморфизма rs1043618 (G>С) гена HSPA1A.
Известен способ анализа генетических вариаций в геноме человека методом секвенирования амплифицированных участков ДНК [Mardis E. R. DNA sequencing technologies: 2006-2016 //Nature protocols. - 2017. - Vol. 12. - №. 2. - P. 213-218]. Недостатками метода являются высокая стоимость оборудования и реагентов, что исключает широкое внедрение метода в экспериментальные исследования, особенно изучение многофакторных заболеваний, которые требуют большого размера выборок для обеспечения высокой мощности исследований.
Известен способ анализа генетических вариаций в геноме человека методом матричноактивированной лазерной десорбционно-ионизационной масс-спектрометрии (MALDI). Метод заключается в том, анализируемая ДНК переносится на подложку, где она кристаллизуется с матрицей. Затем кристаллизованные аналиты переносят, облучают лазером, вызывая десорбцию и ионизацию молекул в вакуумной камере. Положительно заряженные ионы ДНК ускоряются и мигрируют через вакуумную трубку к высокочувствительному детектору с разной скоростью в зависимости от массы ионов, что приводит к различному времени пролета. Используя время пролета отдельных ионизированных ДНК-аналитов, система определяет массу и отображает масс-спектр, идентифицирующий различные генетические мишени [Li D. et al. MALDI-TOF mass spectrometry in clinical analysis and research //ACS Measurement Science Au. - 2022. - Vol. 2. - №. 5. - P. 385-404]. Недостатками метода являются трудоемкость, высокая стоимость оборудования, высокая стоимость эксперимента, наличие высококвалифицированного персонала.
За прототип выбран коммерческий набор по генотипированию rs1043618 (C/G) HSPA1A (Assay ID C__11917510_10; каталог 4351379) компании ThermoFisher. Однако, генотипирование с использованием коммерческих наборов характеризуется высокой стоимостью, а информация о структуре необходимых для проведения ПЦР праймеров и аллель-специфических зондов является закрытой для исследователей, в связи с чем он не может быть воспроизведен при наличии стандартного набора оборудования и реактивов.
Таким образом, существует реальная потребность в создании быстрого, недорогого и легко воспроизводимого способа идентификации полиморфизма rs1043618 (G>С) гена HSPA1A, с доступной всем исследователям структурой праймеров и аллель-специфических зондов, который мог бы использоваться в качестве «рутинного» метода генотипирования в любой ПЦР-лаборатории.
Раскрытие сущности изобретения. Техническим результатом данного изобретения является разработка простого в исполнении и экономически целесообразного способа генотипирования однонуклеотидного полиморфизма rs1043618 (G>С), локализованного в позиции chr6:31815730 (GRCh38.p14) гена HSPA1A (Gene ID: 3303) методом полимеразной цепной реакции в режиме «реального времени» с применением аллель-специфических сигнальных зондов, содержащие флуорофоры FAM и ROX.
Технический результат достигается тем, что идентификацию аллельных вариантов rs1043618 (G>С) гена HSPA1A осуществляют с использованием прямого праймера rs1043618 5′-ATCCAGTGTTCCGTTTCCAG-3′ (SEQ ID NO 1), обратного праймера rs1043618 5′-GAGTAGGTGGTGCCCAGGT-3′ (SEQ ID NO 2), rs1043618-G-аллель-специфичного флуоресцентно-меченого зонда 5′-(FAM)CTCAGAGCGGAGCCGAC(RTQ1)-3′ (SEQ ID NO 3), rs1043618-C-аллель-специфичного флуоресцентно-меченого зонда 5′-(ROX)CTCAGAGCCGAGCCGAC(BHQ2)-3′ (SEQ ID NO 4).
Изобретение поясняется следующей фигурой: дискриминация аллелей по локусу rs1043618 гена HSPA1A при генотипировании методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов по данным величин RFU (относительные единицы флуоресценции) на амплификаторе CFX96: генотипы rs1043618-G/G показаны оранжевыми кругами, генотипы rs1043618-G/C показаны зелеными треугольниками, генотипы rs1043618-C/C показаны голубыми квадратами; черным ромбом отмечен отрицательный контроль.
Работа над дизайном олигонуклеотидов включала несколько этапов:
1) С применением открытой базы данных Ensembl genome browser 109 [https://www.ensembl.org/index.html] выбран синвенс, фланкирующий искомую однонуклеотидную замену [G/C] rs1043618 HSPA1A, и затем с помощью доступного онлайн программного обеспечения Primer3web version 4.1.0 [https://primer3.ut.ee/] подобрана последовательность олигонуклеотидов, используемых для проведения ПЦР-реакции:
прямой общий праймер rs1043618 5′-ATCCAGTGTTCCGTTTCCAG-3′ (SEQ ID NO 1),
обратный общий праймер rs1043618 5′-GAGTAGGTGGTGCCCAGGT-3′ (SEQ ID NO 2).
Размер амплифицируемого в ходе ПЦР фрагмента гена HSPA1A составляет 110 пар нуклеотидов (ATCCAGTGTTCCGTTTCCAGCCCCCAATCTCAGAGC[G/C]GAGCCGACAGAGAGCAGGGAACCGGCATGGCCAAAGCCGCGGCGATCGGCATCGACCTGGGCACCACCTACTC).
2). Для дизайна зондов пользовались практическими рекомендациями [Basu C. (ed.). PCR primer design. - New york : Humana Press, 2015]. В реакции использовались гидролизные зонды. Последовательность зонда подбирали таким образом, чтобы он отжигался на матрицу между прямым и обратным праймерами. Каждый зонд снабжали флуорофором и гасителем флуоресценции, спектр поглощения которого соответствует длинам волн спектра флуорофора. Для гашения флуоресценции FAM пользовались гасителем RTQ1; для гашения флуоресценции ROX - гасителем BHQ2.
На основании изложенных критериев и практических рекомендаций были подобраны зонды со следующей структурой:
rs1043618-G-аллель-специфичный флуоресцентно-меченый зонд 5′-(FAM)CTCAGAGCGGAGCCGAC(RTQ1)-3′,
rs1043618-C-аллель-специфичный флуоресцентно-меченый зонд 5′-(ROX)CTCAGAGCCGAGCCGAC(BHQ2)-3′ (SEQ ID NO 4).
3) Изготовление праймеров и зондов осуществлялось в сервисном центре НПК «Синтол», Москва.
4) С помощью практических экспериментов подобраны оптимальные условия для проведения генотипирования, которые включают следующие этапы: 50°C в течение 2 минут, 95°C в течение 10 минут, затем 39 циклов [95°C в течение 10 секунд и 52°C в течение 1 минуты].
5) Разработанный способ был апробирован в лаборатории геномных исследований на 200 образцах ДНК здоровых индивидуумов биобанка НИИ генетической и молекулярной эпидемиологии КГМУ. Генотипирование осуществляли по данным величин RFU (относительные единицы флуоресценции) зондов с флуоресцентными красителями. По результатам генотипирования rs1043618 82 человека (41%) индивидуумов оказались гомозиготами по аллелю G (генотип G/G), 92 человека (46%) являлись гетерозиготами (генотип G/C), 26 человек (13%) оказались гомозиготами по аллелю C (генотип C/C).
6) Валидацию способа проводили методом масс-спектрометрического анализа на геномном времяпролетном масс-спектрометре MassArray analyzer 4 (Agena Bioscience). Результаты обоих способов генотипирования полностью (100% генотипов) совпали. Однако патентуемый способ генотипирования полиморфного локуса rs1043618 (G>C) гена HSPA1A методом ПЦР в режиме «реального времени» с применением аллель-специфических зондов позволяет значительно (на 6 часов) сократить время проведения анализа, а также снижает себестоимость анализа (в 4-5 раз).
Осуществление изобретения.
Способ осуществляют следующим образом:
1. Выделение ДНК из периферической венозной крови. На первом этапе к 0,5 мл крови добавляли 0,5 мл PBS и центрифугировали 10 мин при 12 тыс. об/мин. Надосадочную жидкость сливали, добавляли 1 мл PBS и вновь центрифугировали при тех же условиях. Надосадочную жидкость сливали, добавляли 200 мкл ТЕ-буфера, пипетировали до растворения осадка и затем последовательно добавляли 10 мкл 1% раствора додецилсульфата натрия SDS и 5 мкл протеиназы К. Пробирки инкубировали в термостате при t=37°C 12 ч. В ходе второго этапа проводили четыре последовательных центрифугирования с фенолом и хлороформом согласно протоколу методики (10 мин, 8 тыс. об/мин), после чего ДНК осаждали ледяным раствором 95% этилового спирта и центрифугировали 10 мин при 14,3 тыс. об/мин. По испарении спирта ДНК растворяли в 100 мкл деионизированной дистиллированной воды. Получаемый раствор ДНК в воде имел чистоту в диапазоне А260/280=1,5-2,0 и среднюю концентрацию около 180-200 нг/мкл.
2. Подготовка образцов ДНК к генотипированию. Качество выделенной ДНК оценивали по степени чистоты и концентрации раствора на спектрофотометре NanoDrop (Thermo Fisher Scientific, США). Все анализируемые образцы ДНК были разведены деионизированной водой до концентрации 15-20 нг/мкл при А260/280=1,5-2,0.
3. Анализ полиморфизма rs1043618 (G>C) гена HSPA1A с помощью полимеразной цепной реакции в реальном времени с использованием аллель-специфических зондов. Для генотипирования использовали два фланкирующих праймера, прямой (SEQ ID NO 1) и обратный (SEQ ID NO 2), а также аллель-специфические зонды: G-аллель-специфичный флуоресцентно-меченый зонд (SEQ ID NO 3), C-аллель-специфичный флуоресцентно-меченый зонд (SEQ ID NO 4).
ПЦР в «реальном времени» проводили в 25 мл реакционной смеси, содержащей 1,25 ЕД ДНК-полимеразы Hot Start Taq («Биолабмикс», Новосибирск, Россия), 20 нг ДНК, по 10 мкM каждого праймера, по 5 мкM каждого зонда, 0.03 мM каждого dNTP, 2,5 мМ MgCl2; 1xПЦР-буфер [67 мМ Tris-HCl, pH 8,8, 16,6 мМ (NH4)2SO4, 0,01% Tween-20]. Реакция амплификации состояла из стадии нагревания до 50°C в течение 2 минут, 95°C в течение 10 минут, затем 39 циклов [95°C в течение 10 секунд и 52°C в течение 1 минуты].
4. Генотипирование. При проведении ПЦР в амплификаторе с флуоресцентной детекцией (Bio-Rad CFX96 или аналогичном амплификаторе) генотипирование осуществляют по данным величин RFU (относительных единиц флуоресценции). Для rs1043618 (G>C) гена HSPA1A зонд с флуоресцентным красителем FAM соответствует аллелю G, зонд с красителем ROX - аллелю C (фиг. 1). На фигуре видно четкое разделение образцов на кластеры, где черный ромб соответствуют отрицательному контролю, кластер оранжевых кругов - соответствует зонду с флуоресцентным красителем FAM и позволяет идентифицировать гомозигот G/G. Кластер синих квадратов соответствует зонду с красителем ROX и позволяет идентифицировать гомозигот C/C. Кластер зеленых треугольников соответствует накоплению уровня флуоресценции по обоим зондам и позволяет идентифицировать гетерозигот G/C.
Резюме.
Таким образом, разработан эффективный и недорогой способ для экспресс-идентификации полиморфного варианта rs1043618 (G>C) гена HSPA1A у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов, который может быть использован в медицине при определении наследственной предрасположенности к развитию заболеваний, ассоциированных с носительством полиморфизмов гена HSPA1A, а также в научных целях.
--->
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ST26SequenceListing PUBLIC "-//WIPO//DTD Sequence Listing
1.3//EN" "ST26SequenceListing_V1_3.dtd">
<ST26SequenceListing dtdVersion="V1_3" fileName="Способ
генотипирования полиморфного локуса rs1043618 (G С) гена HSPA1A у
человека методом ПЦР в режиме «реального времени» с применением
аллель- специфических флуоресцентных зондов.xml" softwareName="WIPO
Sequence" softwareVersion="2.3.0" productionDate="2024-05-03">
<ApplicationIdentification>
<IPOfficeCode>RU</IPOfficeCode>
<ApplicationNumberText></ApplicationNumberText>
<FilingDate></FilingDate>
</ApplicationIdentification>
<ApplicantFileReference>2024</ApplicantFileReference>
<ApplicantName languageCode="ru">Федеральное государственное
бюджетное образовательное учреждение высшего образования
"Курский государственный медицинский университет"
Министерства здравоохранения Российской Федерации,</ApplicantName>
<ApplicantNameLatin>Kursk State Medical
University</ApplicantNameLatin>
<InventionTitle languageCode="ru">Способ генотипирования
полиморфного локуса rs1043618 (G>С) гена HSPA1A у человека
методом ПЦР в режиме «реального времени» с применением аллель-
специфических флуоресцентных зондов</InventionTitle>
<SequenceTotalQuantity>4</SequenceTotalQuantity>
<SequenceData sequenceIDNumber="1">
<INSDSeq>
<INSDSeq_length>20</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..20</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q2">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>atccagtgttccgtttccag</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="2">
<INSDSeq>
<INSDSeq_length>19</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..19</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q4">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>gagtaggtggtgcccaggt</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="3">
<INSDSeq>
<INSDSeq_length>17</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..17</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q6">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>ctcagagcggagccgac</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="4">
<INSDSeq>
<INSDSeq_length>17</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..17</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q8">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>ctcagagccgagccgac</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
</ST26SequenceListing>
<---
Изобретение относится к области биотехнологии, молекулярно-генетической диагностики и может быть использовано в медицине при определении наследственной предрасположенности к развитию заболеваний, ассоциированных с носительством полиморфного варианта rs1043618 (G>С) гена HSPA1A. Предложен способ генотипирования полиморфного rs1043618 (G>С) гена HSPA1A у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов, предусматривающий проведение ПЦР с использованием специально подобранных праймеров (прямого 5'-ATCCAGTGTTCCGTTTCCAG-3' и обратного 5'-GAGTAGGTGGTGCCCAGGT-3') и зондов c флуорофорами (G-аллель-специфичного флуоресцентно-меченого зонда 5'-(FAM)CTCAGAGCGGAGCCGAC(RTQ1)-3' и C-аллель-специфичного флуоресцентно-меченого зонда 5'-(ROX)CTCAGAGCCGAGCCGAC(BHQ2)-3') в амплификаторе с детекцией флуоресценции. Изобретение позволяет расширить арсенал способов генотипирования полиморфных вариантов гена HSPA1A, отличается простотой, точностью и низкой себестоимостью. 1 ил.
Способ генотипирования полиморфного локуса rs1043618 (G>С) гена HSPA1A у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов, отличающийся тем, что идентификацию аллельных вариантов rs1043618 (G>С) гена HSPA1A осуществляют с использованием прямого праймера rs1043618 5'-ATCCAGTGTTCCGTTTCCAG-3' (SEQ ID NO 1), обратного праймера rs1043618 5'-GAGTAGGTGGTGCCCAGGT-3' (SEQ ID NO 2), rs1043618-G-аллель-специфичного флуоресцентно-меченого зонда 5'-(FAM)CTCAGAGCGGAGCCGAC(RTQ1)-3' (SEQ ID NO 3), rs1043618-C-аллель-специфичного флуоресцентно-меченого зонда 5'-(ROX)CTCAGAGCCGAGCCGAC(BHQ2)-3' (SEQ ID NO 4).
Авторы
Даты
2024-10-21—Публикация
2024-06-03—Подача