СТАЛЬ Российский патент 1994 года по МПК C22C38/54 

Описание патента на изобретение RU2016132C1

Изобретение относится к металлургии, в частности к сталям, которые могут быть использованы для изготовления крупногабаритных изделий, например, сосудов давления типа корпус реактора АЭС с сечением заготовок до 350 мм (КП 45 при 350оС).

Известна сталь, состоящая из следующих компонентов, мас.%: углерода 0,08-0,12; кремния 0,15-0,35; марганца 0,6-1,2; никеля 0,5-0,9; хрома 1,8-2,5; молибдена 0,5-0,8; ванадия 0,015-0,045; алюминия 0,01-0,07; азота 0,006-0,012; кальция 0,0002-0,0009; железо остальное.

Недостатком указанной стали является пониженная прочность.

Наиболее близкой по составу и достигаемому эффекту является сталь, которая может быть принята за прототип предлагаемой стали, состоящая из следующих компонентов, мас.%: углерод 0,13-0,18; кремний 0,17-0,37; марганец 0,30-0,60; хром 1,70-2,40; никель 1,00-1,50; молибден 0,50-0,70; ванадий 0,05-0,12. алюминий 0,01-0,035; азот 0,005-0.012. медь 0,11-0,20. мышьяк 0,0035-0,0055; железо остальное.

Недостатком указанной стали является нестабильность ударной вязкости в процессе технологических циклов изготовления (сварки и промежуточных отпусков) и эксплуатации изделия.

Целью данного изобретения является повышение ударной вязкости.

Цель достигается тем, что сталь, содержащая углерод, кремний, марганец, никель, молибден, ванадий, алюминий, азот и железо, дополнительно содержит кальций и бор следующем соотношении компонентов, мас.%: углерод 0,13-0,18; кремний 0,15-0,35, марганец 0,65-1,10; никель 0,5-0,8; хром 1,8-2,5; молибден 0,5-0,8; ванадий 0,015-0,0045; алюминий 0,01-0,07; азот 0,006-0,012; кальций 0,0002-0,0009; бор 0,0002-0,003; железо - остальное. Сталь может содержать примеси, мас.%: меди до 0,2; серы до 0,02; фосфора до 0,02.

Предлагаемая сталь содержит в среднем на 0,5% никеля меньше по сравнению с известной сталью при более высоком содержании марганца, что предотвращает падение ударной вязкости при технологических циклах изготовления (сварки и промежуточных отпусках) и эксплуатации изделия за счет повышения точки А1 до 750-765оС (по сравнению с 700-730оС для известной стали) и исключения образования локальных микрообъемов относительно стабильного аустенита в процессе технологических отпусков в интервале температур 620-680оС (обусловленном допускаемым уровнем остаточных напряжений в зоне сварного шва) общей длительностью до 45 ч.

Введение в предлагаемую сталь дополнительного количества марганца (0,65-1,10% ) для сохранения необходимой прокаливаемости не приводит к снижению ударной вязкости по указанной причине, так как суммарная дендритная ликвация по этим аустенитообразующим элементам уменьшается (дендритная ликвация марганца в крупных поковках рассматриваемых сталей составляет, как правило, 0,15-0,18% , в то время как никеля 0,30-0,35%). Уменьшение содержания никеля в стали приводит также к снижению стоимости стали.

Введение в сталь дополнительно бора в указанном количестве повышает прокаливаемость и способствует улучшению однородности свойств толстостенных заготовок в результате замедления выделения феррита при низких скоростях охлаждения.

Наличие в предлагаемой стали кальция в количестве 0,0002-0,0009 мас.% вызывает увеличение ее пластичности за счет благоприятного влияния на распpеделение сульфидных включений.

В табл. 1 приведен состав трех плавок предлагаемой стали с содержанием компонентов на нижнем, среднем и верхнем пределах и известной стали двух плавок с содержанием компонентов на нижнем и верхнем пределах, а в табл.2 приведены механические свойства предлагаемой и известной стали после оптимальной термообработки, имитирующей термообработку поковки сечение 350 мм на КП 45 (при 350оС), а также результаты испытаний ударной вязкости после специальной циклической обработки при отрицательных температурах (до минус 190о), направленной на выявление нестабильности ударной вязкости.

Как видно из табл.2, предлагаемая сталь при одинаковом с известной сталью уровне прочностных и пластических характеристик характеризуется неизменностью значений ударной вязкости при -25оС после дополнительного трехкратного охлаждения до -190оС.

У известной стали после аналогичной обработки происходит падение ударной вязкости почти в 1,5 раза. Металлографическими исследованиями (цветная металлография) и дилатометрическими исследованиями падение ударной вязкости для известной стали связали с распадом при циклическом охлаждении до -190оС небольших количеств (2-5% ) аустенита, образовавшегося в процессе отпуска при температурах, близких к точке Ас1.

Применение предлагаемой стали для изготовления сосуда высокого давления типа реактора АЭС позволит снизить затраты на изготовление одного корпуса.

Похожие патенты RU2016132C1

название год авторы номер документа
Сталь 1990
  • Юханов Вячеслав Алексеевич
  • Просвирин Карл Владимирович
  • Туляков Георгий Анатольевич
  • Звездин Юрий Иванович
  • Монина Валерия Яковлевна
  • Стоналова Ирина Анатольевна
  • Дуб Владимир Семенович
  • Носов Станислав Иванович
  • Лебедев Владимир Васильевич
  • Соболев Юрий Васильевич
  • Сулягин Валерий Романович
  • Ильин Юрий Васильевич
  • Ривкин Семен Иосифович
  • Ходасевич Александр Александрович
  • Сандомирский Марк Моисеевич
  • Баландин Сергей Юрьевич
  • Драгунов Юрий Григорьевич
  • Федоров Валентин Григорьевич
SU1749304A1
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ 2012
  • Огольцов Алексей Андреевич
  • Сафронова Наталья Николаевна
  • Шеремет Наталия Павловна
  • Новоселов Сергей Иванович
  • Рыбаков Сергей Александрович
RU2495149C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ, СТАЛЬ И ИЗДЕЛИЯ ИЗ НЕЕ 2004
  • Волосков А.Д.
  • Нижегородов С.Ю.
RU2244756C1
КОРРОЗИОННО-СТОЙКАЯ ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2696792C1
СТАЛЬ 1995
  • Дьяконова В.С.
  • Тишков В.Я.
  • Масленников В.А.
  • Попова Т.Н.
  • Шадрунова С.И.
  • Шурыгин А.В.
  • Сысолятин В.И.
  • Бурман П.Н.
  • Шафран С.А.
  • Шкатова А.М.
RU2075534C1
Высокопрочный стальной прокат и способ его производства 2020
  • Филатов Николай Владимирович
  • Жиронкин Михаил Валерьевич
  • Правосудов Алексей Александрович
  • Кухтин Сергей Анатольевич
RU2761572C1
СТАЛЬ 2002
  • Ламухин А.М.
  • Никитин В.Н.
  • Голованов А.В.
  • Попова Т.Н.
  • Маслюк В.М.
  • Кувшинников О.А.
  • Зиборов А.В.
  • Балдаев Б.Я.
  • Никитин М.В.
  • Баранов В.П.
  • Белов Г.А.
  • Колесников В.Ю.
  • Трайно А.И.
  • Пименова Т.В.
  • Кураш Валентин Станиславович
  • Киселев С.И.
RU2223343C1
КОНСТРУКЦИОННАЯ СТАЛЬ 1993
  • Власов Л.А.
  • Сулацков В.И.
  • Шахмин С.И.
  • Федченко Ю.А.
  • Деменев Ю.С.
RU2042734C1
Сталь 1979
  • Долбенко Е.Т.
  • Астафьев А.А.
  • Бобков В.В.
  • Карк Г.С.
  • Марков С.И.
  • Савуков В.П.
  • Зубченко А.С.
  • Лобода А.С.
  • Соболев В.В.
  • Соболев Ю.В.
  • Литвак В.А.
  • Ривкин С.И.
  • Нечаев В.А.
  • Шабунин В.Г.
  • Ходосевич А.А.
  • Столяров В.Н.
  • Пыхтарь Л.К.
  • Белоросова А.С.
SU944378A1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2018
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Назаратин Владимир Васильевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2683173C1

Иллюстрации к изобретению RU 2 016 132 C1

Реферат патента 1994 года СТАЛЬ

Изобретение относится к металлургии, в частности к стали, которая может быть использована для изготовления крупногабаритных изделий, например, сосудов давления типа корпус реактора АЭС с сечением заготовок до 350 мм. С целью повышения ударной вязкости сталь дополнительно содержит кальций и бор при следующем соотношении компонентов, мас.%: углерод 0,13 - 0,18; кремний 0,15 - 0,35; марганец 0,65 - 1,10; никель 0,5 - 0,8; хром 1,8 - 2,5; молибден 0,5 - 0,8; ванадий 0,015 - 0,045; алюминий 0,01 - 0,07; азот 0,006 - 0,012; кальций 0,0002 - 0,0009; бор 0,0002 - 0,003; железо остальное. 2 табл.

Формула изобретения RU 2 016 132 C1

СТАЛЬ, содержащая углерод, кремний, марганец, никель, хром, молибден, ванадий, алюминий, азот и железо, отличающаяся тем, что, с целью повышения ударной вязкости, она дополнительно содержит кальций и бор при следующем соотношении компонентов, мас.%:
Углерод 0,13 - 0,18
Кремний 0,15 - 0,35
Марганец 0,65 - 1,1
Никель 0,5 - 0,8
Хром 1,8 - 2,5
Молибден 0,5 - 0,8
Ванадий 0,015 - 0,045
Алюминий 0,01 - 0,07
Азот 0,006 - 0,012
Кальций 0,0002 - 0,0009
Бор 0,0002 - 0,003
Железо Остальное

Документы, цитированные в отчете о поиске Патент 1994 года RU2016132C1

Сталь 1975
  • Зорев Н.Н.
  • Астафьев А.А.
  • Лобода А.С.
  • Савуков В.П.
  • Рунов А.Е.
  • Белов В.А.
  • Соболев Ю.В.
  • Соболев В.В.
  • Павлов Н.М.
  • Патон Б.Е.
  • Медовар Б.И.
  • Баландин Ю.Ф.
  • Горынин И.В.
  • Звездин Ю.И.
  • Иванов К.М.
  • Игнатов В.А.
  • Емельяненко Ю.Г.
SU532261A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 016 132 C1

Авторы

Юханов В.А.

Просвирин К.В.

Туляков Г.А.

Звездин Ю.И.

Монина В.Я.

Стоналова И.А.

Дуб В.С.

Носов С.И.

Лебедев В.В.

Соболев Ю.В.

Сулягин В.Р.

Ильин Ю.В.

Ривкин С.И.

Ходасевич А.А.

Сандомирский М.М.

Грибанов А.В.

Драгунов Ю.Г.

Федоров В.Г.

Даты

1994-07-15Публикация

1991-09-06Подача