СТАЛЬ Российский патент 1994 года по МПК C22C38/46 

Описание патента на изобретение RU2020184C1

Изобретение относится к металлургии железа, точнее к сплавам черных металлов, и предназначено для использования при изготовлении дорнов, применяемых при прокатке бесшовных труб.

Известна сталь, содержащая углерод, марганец, кремний, хром, молибден, ванадий, серу и железо при следующем соотношении ингредиентов, мас.%: Углерод 0,22-0,29 Марганец 0,4-0,7 Кремний 0,17-0,37 Хром 2,1-2,6 Молибден 0,9-1,1 Ванадий 0,3-0,5 Сера 0,025 Железо Остальное
(см. ГОСТ 20072-74,
сталь 25Х2МIФ).

Недостатком известной стали является ее низкая сопротивляемость термической усталости. Объясняется это тем, что по границам крупных (5-6 балла) зерен в стали наблюдаются пленочные выделения сульфидов железа и марганца.

Данное обстоятельство приводит к образованию по границам зерен микроскопических трещин в металле изделий, работающих в условиях многократного нагрева и охлаждения, т.к. при таких условиях работы изделия его поверхностные слои испытывают объемные изменения, вызывающие напряжения, которые в дальнейшем приводят к образованию трещин по границам зерен в виде сетки разгара, что снижает наработку (количество полученных труб из проката в тоннах) изделия, например дорна, применяемого при получении труб из проката.

Например, при производстве бесшовной трубы диаметром 245 мм средняя наработка дорна при прокатке составляет 460 т металла, а наличие сетки разгара на поверхности дорна наблюдается уже после 260 термоциклов (нагрев и охлаждение).

Кроме того, на сопротивляемость к термической усталости сказываются недостаточные пластические характеристики (ударная вязкость при 20oС равна 49 Дж/см2, при 500oC - 86 Дж/см2, при 600oC - 94 Дж/см2), что также снижает среднюю наработку в тоннах проката. Известна другая сталь, содержащая углерод, марганец, кремний, хром, никель, молибден, ванадий, серу и железо при следующем соотношении ингредиентов, мас. % : Углерод 0,23-0,32 Марганец 0,3-0,7 Кремний 0,17-0,37 Хром 1,6-1,9 Никель 0,1-0,6 Молибден 0,6-0,9 Ванадий 0,15-0,25 Сера 0,025 Железо Остальное
(см. ТУ 24.01.1825-
79, сталь СД-2).

Данная сталь обладает более высокими пластическими свойствами в горячем состоянии (ударная вязкость при 500oC равна 90-95 Дж/см2, при 600oC - 100-105 Дж/см2.

Однако сопротивление термической усталости находится на низком уровне, что приводит при получении труб к средней наработке дорнов из этой стали, не превышающей 560 т проката. Это связано с наличием на границах зерен (6-7 балла) стали сульфидных пленок.

Целью изобретения является повышение сопротивления термической усталости.

Поставленная цель достигается благодаря тому, что в сталь, содержащую углерод, кремний, марганец, хром, молибден, никель, ванадий, серу и железо, дополнительно введены кальций и магний при следующем соотношении ингредиентов, мас. % : Углерод 0,23-0,32 Марганец 0,3-0,7 Кремний 0,1-0,4 Хром 1,6-1,9 Молибден 0,6-0,9 Никель 0,1-0,6 Ванадий 0,15-0,25 Сера 0,004-0,02 Кальций 0,001-0,006 Магний 0,001-0,004 Железо Остальное
При этом суммарное содержание кальция и магния по отношению к содержанию серы составляет 0,2...2,0.

Комплексное введение в сталь кальция и магния позволяет изменить качественный состав сульфидных включений. Являясь поверхностно-активными элементами, кальций и магний переводят сульфиды железа и марганца с границ зерен в само зерно, что способствует улучшению межзеренных связей и способствует резкому повышению пластичности и ударной вязкости стали, а благодаря глубокому раскислению стали - уменьшению в ней содержания газов. Кроме того, эти элементы переводят серу в комплексные глобулярные соединения оксисульфидов, устраняя ее диффузию на границы зерен, при этом значительно измельчается зерно (до 9 балла) и округляется форма неметаллических включений.

В результате повышается сопротивление к термической усталости (сетка разгара появляется на дорнах после значительного количества термоциклов) и ударная вязкость, что уменьшает развитие трещин по границам зерен в условиях многократного нагрева и охлаждения и увеличивается средняя наработка (в тоннах проката) изготовленных из предлагаемой стали изделий (дорнов).

Увеличение содержания в стали кальция и магния более заявляемых пределов нецелесообразно, т.к. растворимость каждого из них в жидкой стали ограничена. В силу этого обстоятельства эти элементы вводят для связывания серы, как правило, совместно для достижения желаемого результата.

Как показали проведенные эксперименты, увеличение кальция в стали более 0,06% приводит к снижению ударной вязкости при повышенных температурах из-за наличия повышенного содержания неметаллических включений типа оксидов и глобулей оксисульфидов, что снижает наработку дорнов, а увеличение содержания магния в стали более 0,004% не приводит к дальнейшему повышению ударной вязкости и уменьшению развития трещин. Кроме того, это увеличивает стоимость стали.

Уменьшение содержания кальция и магния менее заявляемых пределов в стали не оказывает заметного влияния на повышение ударной вязкости и пластичности, а также на устранение охрупчивающих явлений при повышенных температурах, т.к. не устраняется появление сульфидов железа и марганца по границам зерен, что приводит к образованию сетки разгара и снижает наработку дорнов.

Заявляемое отношение суммарного содержания кальция и магния к содержанию серы в стали стабилизирует заданные свойства в горячем состоянии и обеспечивает очищение границ зерен от сульфидных включений, что в совокупности с первым признаком - введением кальция и магния - дополнительно повышает сопротивление к термической усталости, и средняя наработка (в тоннах проката) изготовленных из стали изделий повышается.

При отношении суммарного содержания кальция и магния к содержанию серы менее 0,2 (серы много) увеличивается общее количество сульфидных включений, снижающих ударную вязкость, что уменьшает среднюю наработку дорнов.

При указанном же отношении более 2,0 (серы мало) обрабатываемость резанием и шлифованием резко уменьшается, что ведет к удорожанию изделий, а потому нецелесообразно. Кроме того, возрастает загрязненность стали неметаллическими (оксидными) включениями, что сказывается на снижении пластических свойств металла.

Введение в сталь кальция и магния в указанных пределах известно, однако они вводятся для повышения механических свойств стали в сочетании с марганцем, кремнием, никелем, хромом, алюминием, барием, бором, молибденом, редкоземельными металлами, титаном, ванадием, азотом, ниобием, что наряду с повышением этих свойств ведет к уменьшению сопротивления к термической усталости и снижению средней наработки изделий, работающих в условиях многократного нагрева и охлаждения.

В заявляемой же стали они находятся в неизвестном сочетании с углеродом, марганцем, кремнием, хромом, молибденом, никелем, ванадием и серой, что позволяет повысить сопротивление к термической усталости стали.

На основании этого можно сделать вывод о соответствии предлагаемой стали критерию "Изобретательский уровень".

Отработка состава заявляемой стали была проведена на Пермском машиностроительном заводе им. В. И. Ленина при выплавке опытных плавок в индукционной печи ИСТ-0,16 в тигле емкостью 10 кг с получением слитков диаметром 50 мм, из которых сваривали электроды. Затем полученные электроды переплавляли на печи электрошлакового переплава А-550 под флюсом АНФ-35 в кристаллизаторе диаметром 110 мм. Полученные слитки ковались на диаметр 60 мм и из поковок вырезали образцы для испытания на ударную вязкость и склонность к образованию трещин (сетки разгара). При определении склонности заявляемой стали к образованию сетки разгара образцы нагревали до 700oC, охлаждали на воздухе до температуры 200oC и повторяли данный цикл до появления трещин.

Для изготовления дорнов предлагаемую сталь выплавляли в мартеновской печи совмещенным процессом, разливали на машине непрерывного литья заготовок, а полученные заготовки-электроды переплавляли на печи У-552М. Слитки ковали на радиально-ковочной машине SХР-55. Из полученных поковок изготовляли дорны диаметром 244 мм и длиной 5500 мм, которые испытывали на пилигримном прокатном стане при изготовлении горячекатаных труб.

Для опробования было представлено 11 составов стали: 5 cоставов - заявляемые и 6 - с содержанием кальция, магния и отношением их суммарного содержания в стали к содержанию в ней серы, выходящими за заявляемые пределы.

Результаты испытания предоставлены в таблицах: в табл.1 - химический состав предложенных для испытания вариантов стали, в табл.2 - результаты испытаний стали на ударную вязкость, склонность к образованию трещин и показатели наработки дорнов.

Кроме того, проведены испытания известных сталей (состав 12,13).

Из табл.1,2 видно, что применение заявляемой стали (составы 1-5) обеспечивают по сравнению с известными сталями (составы 12,13) повышение ударной вязкости и количества термоциклов, что увеличивает сопротивление против термической усталости, уменьшает возможность образования трещин и увеличивает наработку (срок службы) дорнов, изготовленных из этой стали.

Опробование показало также, что получение стали с выходящими за заявляемые пределы содержанием кальция и магния (составы 6-9) приводит либо к уменьшению количества термоциклов (составы 6, 7, 8), приводящих к появлению сетки разгара, образованию трещин, что снижает сопротивление к термической усталости и наработку изготовленных из этой стали дорнов, либо не приводит к дальнейшему увеличению ударной вязкости и повышению наработки дорнов (состав 9).

Кроме того, при отношении суммарного содержания кальция и магния к сере менее 0,2 (состав 10) снижается ударная вязкость стали и средняя наработка дорнов, изготовленных из этой стали, а при указанном отношении более 2,0 (состав 11) - к резкому уменьшению обрабатываемости, что увеличивает трудозатраты и стоимость на изготовление дорнов.

Предлагаемая сталь не сравнению с прототипом обладает более высокой ударной вязкостью при повышенной температуре (при 500oC ударная вязкость возрастает до 100-110 Дж/см2, при 600oC - до 114-124 Дж/см2), обладает меньшей склонностью к образованию трещин (количество термоциклов увеличивается с 340 до 390-440), что повышает стойкость изготовленных из этой стали дорнов (срок наработки дорнов увеличивается в 1,2-1,3 раза).

Заявляемая сталь по сравнению с известной за счет введения кальция и магния, а также предлагаемого отношения суммарного содержания кальция и магния к содержанию серы обладает лучшей межзеренной связью, т.к. изменяется качественный состав сульфидных включений, уменьшается содержание газов, происходит перевод серы в глобулярные соединения оксисульфидов, что устраняет ее диффузию на границы зерен, измельчается зерно, что уменьшает развитие трещин по границам зерен, повышает ударную вязкость и сопротивление к термической усталости, в результате чего увеличивается средняя наработка изготовленных из стали дорнов.

Похожие патенты RU2020184C1

название год авторы номер документа
КОНСТРУКЦИОННАЯ СТАЛЬ 1993
  • Власов Л.А.
  • Сулацков В.И.
  • Шахмин С.И.
  • Федченко Ю.А.
  • Деменев Ю.С.
RU2042734C1
Сталь 1990
  • Глазистов Анатолий Григорьевич
SU1763511A1
ЛИТАЯ ШТАМПОВАЯ СТАЛЬ 1996
  • Гурьев А.М.
  • Андросов А.П.
  • Жданов А.Н.
  • Кириенко А.М.
  • Свищенко В.В.
RU2095460C1
СТАЛЬ 2013
  • Дуб Владимир Семенович
  • Лужанский Илья Борисович
  • Марков Сергей Иванович
  • Новиков Владимир Алексеевич
  • Ефимов Виктор Михайлович
  • Цих Сергей Геннадьевич
  • Берман Леонид Исаевич
  • Евтюшкин Евгений Геннадьевич
  • Матвейчук Валерий Анатольевич
  • Афанасьев Андрей Борисович
  • Клауч Дмитрий Николаевич
  • Овумян Гагик Гегамович
  • Носов Даниил Петрович
  • Думилин Сергей Владимирович
RU2532661C1
ТРУБА ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ 2015
  • Ильичев Андрей Вячеславович
  • Овчинников Дмитрий Владимирович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Лефлер Михаил Ноехович
  • Софрыгина Ольга Андреевна
  • Корчагина Ирина Викторовна
RU2599474C1
ВЫСОКОПРОЧНАЯ СВАРИВАЕМАЯ ХЛАДОСТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2019
  • Сыч Ольга Васильевна
  • Орлов Виктор Валерьевич
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Голубева Марина Васильевна
  • Яшина Екатерина Александровна
  • Мотовилина Галина Дмитриевна
RU2731223C1
Чугун для металлических форм 1990
  • Ковалевский Георгий Федорович
  • Карпенко Михаил Иванович
  • Марукович Евгений Игнатьевич
  • Бадюкова Светлана Михайловна
  • Науменко Василий Иванович
SU1724716A1
КОНСТРУКЦИОННАЯ НИЗКОЛЕГИРОВАННАЯ ЛИТЕЙНАЯ СТАЛЬ 2009
  • Алов Виктор Анатольевич
  • Карпенко Михаил Иванович
  • Епархин Олег Модестович
  • Попков Александр Николаевич
  • Соцкая Ирина Марковна
  • Дайникова Валентина Шагаровна
  • Бадюкова Ульяна Сергеевна
  • Ершова Вера Федоровна
RU2414523C2
ЭЛЕКТРОДНАЯ ЛЕНТА ДЛЯ НАПЛАВКИ 1995
  • Лещинский Л.К.
  • Иванов В.П.
  • Маслов А.А.
  • Краева Л.В.
  • Кочи Г.Л.
  • Соболев В.Ф.
RU2087589C1
ЖАРОПРОЧНАЯ СТАЛЬ 2011
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дуб Владимир Алексеевич
  • Ригина Людмила Георгиевна
  • Щенкова Изабелла Алексеевна
  • Козлов Павел Александрович
  • Фёдоров Александр Анатольевич
  • Сафьянов Анатолий Васильевич
  • Фирсов Борис Николаевич
RU2448192C1

Иллюстрации к изобретению RU 2 020 184 C1

Реферат патента 1994 года СТАЛЬ

Изобретение относится к области металлургии, в частности к стали, и предназначено для использования при изготовлении дорнов, применяемых при прокатке бесшовных труб. С целью повышения сопротивления к термической усталости сталь дополнительно содержит кальций и магний при следующем соотношении компонентов, мас.%: углерод 0,23 - 0,32; марганец 0,3 - 0,7; кремний 0,1 - 0,4; хром 1,6 - 1,9; молибден 0,6 - 0,9; никель 0,1 - 0,6; ванадий 0,15 - 0,25; сера 0,004 - 0,02; кальций 0,001 - 0,006; магний 0,001 - 0,004; железо - остальное. Кроме того, суммарное содержание кальция и магния по отношению к содержанию серы составляет 0,2 - 2,0. 1 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 020 184 C1

1. СТАЛЬ, содержащая углерод, кремний, марганец, хром, молибден, никель, ванадий, серу, железо, отличающаяся тем, что, с целью повышения сопротивления к термической усталости, она дополнительно содержит кальций и магний при следующем соотношении компонентов, мас.%:
Углерод 0,23 - 0,32
Марганец 0,3 - 0,7
Кремний 0,1 - 0,4
Хром 1,6 - 1,9
Молибден 0,6 - 0,9
Никель 0,1 - 0,6
Ванадий 0,15 - 0,25
Сера 0,004 - 0,02
Кальций 0,001 - 0,006
Магний 0,001 - 0,004
Железо Остальное
2. Сталь по п.1, отличающаяся тем, что суммарное содержание кальция и магния по отношению к содержанию серы составляет 0,2 - 2,0.

Документы, цитированные в отчете о поиске Патент 1994 года RU2020184C1

Пишущая машина для тюркско-арабского шрифта 1922
  • Мадьярова А.
  • Туганов Т.
SU24A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1

RU 2 020 184 C1

Авторы

Сулацков В.И.

Власов Л.А.

Поздеев В.Д.

Шахмин С.И.

Лабендик Е.Г.

Зеленый Н.И.

Старостин Ю.А.

Даты

1994-09-30Публикация

1991-10-14Подача