СПОСОБ КОМБИНИРОВАННОЙ ОБРАБОТКИ СЛИТКА В МЕТАЛЛИЧЕСКОЙ ФОРМЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 1994 года по МПК B22D27/08 B22D11/00 

Описание патента на изобретение RU2025212C1

Изобретение относится к металлургии, конкретнее к производству слитков или отливок из различных металлов и сплавов, и может быть использовано в литейном производстве черных и цветных металлов.

Известен способ ультразвуковой обработки кристаллизующегося слитка [1], включающий подачу жидкого металла в кристаллизатор-форму (изложницу), ультразвуковую вибрацию жидкого металла в нем.

Известно устройство [1] для ультразвуковой обработки кристаллизующегося слитка, содержащее емкость для жидкого металла, акустическую систему, состоящую из преобразователя и волновода. Волновод для передачи ультразвуковых колебаний может крепиться непосредственно к стенке емкости с жидким металлом или вставляться в донную часть емкости, образуя ее дно. Преобразователь может крепиться к кольцу, которое устанавливается на верх формы (кристаллизатора), внутренний размер - диаметр которой совпадает с внутренним размером - диаметром кольца.

В известном способе ультразвуковая обработка кристаллизующегося металла осуществляется через возбуждение в жидком металле ультразвукового поля, которое приводит металл в движение, причем движение и характер течения могут быть различными в зависимости от места установки ультразвуковых преобразователей на стенке формы. Поле, наведенное в металле, может быть аксиальным, радиальным или поперечным по отношению к наружной стенке формы.

Аксиальное направление поля генерируется путем установки волновода с вибратором в донной части формы. Радиальное поле формируется кольцом с волноводами-вибраторами, которое устанавливается на верхнюю часть формы. Поперечное поле возбуждается установкой преобразователей по всей высоте формы на различных горизонтах перпендикулярно оси слитка.

Известный способ имеет существенный недостаток, происходящий из-за ввода акустической энергии в жидкий металл локально по отношению к обрабатываемому объему, что создает неравномерность в обработке жидкой ванны.

Известный способ имеет еще один недостаток, который происходит из-за неучета процесса развития усадки в слитке при кристаллизации, сопровождающейся отходом слитка от стенок формы с образованием газового зазора. Это приводит к нарушению акустического контакта между вибрирующей поверхностью и слитком. Время обработки слитка в процессе кристаллизации сокращается, и эффективность воздействия снижается.

Этот недостаток прежде всего относится к устройству, где ввод акустической энергии осуществляется через стенки формы.

При вводе через донну часть слитка неравномерность обработки происходит из-за затухания акустической энергии по высоте слитка. Чем больше высота слитка, тем сильнее будет выражена неравномерность обработки донной части слитка и зоны, кристаллизующейся у зеркала.

Недостатком конструкции устройства является негарантированность акустического контакта между волноводом и жидким металлом.

Акустический контакт может быть обеспечен только при адгезии-приваре жидкого металла к поверхности волновода или кольца, излучающего в жидкий металл. В конструкции не предусматривается решение этого вопроса. Отсутствие акустического контакта исключает возможность возбуждения акустического поля, и обработки расплава происходить не будет.

Техническим результатом изобретения является повышение эффективности ультразвуковой обработки слитка и его качества.

Эффективная обработка расплава может быть достигнута в случае учета особенности затвердевания прямоугольного слитка с небольшой толщиной в сравнении с шириной. Усадка в таком слитке развивается неравномерно - сначала против узких стенок и постепенно переходит к широким. Такая последовательность обусловлена ферростатическим напором, который затрудняет усадку пропорционально площади стенок.

Для возбуждения ультразвуковых колебаний в объеме слитка с учетом развития усадки во время кристаллизации предлагается подводить акустическую энергию комбинированно, - к широким стенкам отливки путем возбуждения в самой стенке ультразвуковой вибрации, а через узкие - непосредственно к отливке, таким образом, чтобы поверхность волновода акустической системы находилась непосредственно в контакте сначала с жидким металлом, а потом с оболочкой кристаллизующейся отливки. В этом случае можно достигнуть наибольшего эффекта передачи ультразвуковой энергии в слиток, т.к. учитывается развитие усадочных процессов в слитке. Усадка оболочки слитка против узкой стенки начинается сразу же после заполнения формы. Контакт волновода с жидким металлом приводит к намораживанию металла и образованию акустического контакта с момента начала кристаллизации.

Для осуществления предлагаемого способа в основу положен принцип ввода акустической энергии одновременно через волновод-излучатель, находящийся в непосредственном контакте с жидким металлом, и через стенку формы, т.е. опосредованно. Равномерность обработки достигается благодаря установке волноводов-излучателей по высоте и периметру стенок формы. Таким образом объем жидкого металла как бы условно разбивается на несколько автономных с излучателями, работающими на этот объем.

С момента поступления жидкого метала в форму ввод акустической энергии осуществляется комбинированно - через стенки и прямо в жидкий металл. Развитие усадки при таком способе ввода акустической энергии приводит только к перераспределению ввода акустической энергии от стенок к волноводам-излучателям, вмороженным в слиток.

В зависимости от геометрии металлической формы расположение волноводов-излучателей имеет следующие особенности.

В случае прямоугольного сечения с соотношением узкой стороны к широкой 1: 5 более непосредственный ввод акустической энергии осуществляют через узкие стенки, а опосредованный ввод - через широкие.

В случае прямоугольного сечения с соотношением сторон от 1:1 до 1:5 непосредственный и опосредованный ввод акустической энергии ведут на каждой из сторон.

Для круглого или овального сечения слитка непосредственный и опосредованный вводы акустической энергии чередуют в каждом сечении формы по высоте слитка.

На фиг. 1 представлена металлическая форма прямоугольного профиля в горизонтальном сечении с соотношением сторон 1:5 и более; на фиг.2 - ее вертикальное сечение; на фиг.3 - металлическая форма прямоугольного профиля в горизонтальном сечении с соотношением сторон менее 1:5, на фиг.4 - металлическая форма круглого профиля в горизонтальном сечении.

На фиг.1-4 изображены форма 1 (фиг.1) для кристаллизующегося расплава, волновод-излучатель 2, работающий на стенку формы, волновод-излучатель с насадкой 3 из металла того же химического состава, что разливается в слиток, соединитель 4, электромеханический преобразователь 5, форма 6 (фиг.3) для кристаллизующегося расплава, волновод-излучатель 7 с насадкой 8 того же химического состава, что разливается в слиток, соединитель 9, электромеханический преобразователь 10, форма 11 круглого сечения (фиг.4) для кристаллизующегося расплава, волновод-излучатель с насадкой 12 того же химического состава, что разливается в слиток, соединитель 13, электромеханический преобразователь 14.

Длина волновода-излучателя для всех устройств на фиг.1, 2, 3, 4 равна половине длины ультразвуковой волны в материале волновода λ/2 при рабочей частоте электромеханического преобразователя или кратна его длине. Длина волны λ равна С/f, где f - рабочая частота 20200 Гц; С - скорость звука в материале волновода, равная 5170 м/с; Е - модуль упругости материала волновода, равный 21˙ 103 кг/мм2, ρ - плотность материала волновода 7,8 г/смC = .

Устройство работает на фиг. 1/2 следующим образом.

Перед подачей металла производится включение электромеханических преобразователей 5, которые возбуждают ультразвуковые колебания в стенках кокиля с помощью волновода-излучателя 2. Затем производится подача жидкого металла. По мере подъема жидкого металла от дна к верхним горизонтам, когда уровень металла достигнет нижнего ряда волноводов с насадками 3 и поднимется выше, производят включение электромеханических преобразователей 5, возбуждающих волноводы с насадками.

Поверхность насадка 3 имеет сродство к жидкому металлу благодаря тому, что их материалы одинаковы. За счет этого происходит привар насадки к слитку, обеспечивающий акустический контакт между слитком и волноводом. Далее, когда уровень металла достигнет следующего горизонта волноводов с насадками 3, производят включение очередного ряда электромеханических преобразователей. После заполнения формы электромеханические преобразователи остаются включенными до окончания процесса кристаллизации слитка.

П р и м е р. Проводили плавку, разливку и последующую ультразвуковую обработку хрома. В индукционной печи был выплавлен хром. Хром был залит в изложницу размером 15 х 140 мм, в которой были установлены волноводы с размерами 130,0 и 136,0 мм. Одни волноводы размерами 130,0 мм крепились к стенке, другие волноводы с размерами 136,0 мм проходили через отверстие в стенке изложницы и имели насадку из чистого хрома диаметром 20 мм и высотой 6 мм. Хром поступал из печи в изложницу, причем волноводы, которые крепились к стенке, возбуждались до поступления металла, а волноводы с насадками из хрома включались по мере поступления металла в изложницу. Ультразвуковое воздействие прекращали после полного затвердевания слитка. Анализ образцов, вырезанных из слитка после ультразвуковой обработки, показал, что во всем поперечном сечении слитка имело место измельчение зерна, в то время как в результате обработки по способу-прототипу измельчение зерна проходило только в поверхностной зоне слитка.

Похожие патенты RU2025212C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ ТЕХНИЧЕСКИ ЧИСТОГО МЕТАЛЛА 1993
  • Марков А.В.
  • Кравченко В.С.
RU2102183C1
Способ полунепрерывного литья чугунных труб 1981
  • Поповцев Юрий Александрович
  • Евдокимов Николай Степанович
  • Рабой Борис Самуилович
  • Рабовский Моисей Григорьевич
  • Красносельских Геннадий Николаевич
  • Рабовский Эдуард Моисеевич
  • Асташкин Юрий Сергеевич
  • Марков Альфред Владимирович
  • Петухов Владимир Ильич
  • Келлер Олег Константинович
  • Валявский Сергей Степанович
SU952420A1
Установка для отливки слитков из вакуумированной стали 1983
  • Бондаренко Виталий Тихонович
  • Чесноков Владимир Иванович
  • Глухих Леонид Яковлевич
  • Царев Александр Васильевич
SU1154339A1
Устройство для акустической обработки кристаллизирующихся расплавов 1982
  • Лубяницкий Григорий Давидович
SU1052561A1
Устройство для акустической обработки кристаллизующихся расплавов 1982
  • Лубяницкий Григорий Давидович
SU1046327A1
СПОСОБ ЭЛЕКТРОВИБРОИМПУЛЬСНОЙ ОБРАБОТКИ КРИСТАЛЛИЗУЮЩЕГОСЯ МЕТАЛЛА 1999
  • Мальцев Г.Т.
  • Шоршоров М.Х.
RU2162026C1
СПОСОБ ПОЛУЧЕНИЯ СЛИТКА 1997
  • Серебренников В.Е.
  • Серебренников Б.В.
RU2132252C1
Ультразвуковой теплообменник для разливки металла 1982
  • Марков Альфред Владимирович
  • Асташкин Юрий Сергеевич
  • Петухов Владимир Ильич
  • Сучков Александр Георгиевич
  • Соседов Вячеслав Семенович
  • Мазун Александр Иванович
  • Таран Виктор Павлович
  • Кузин Николай Павлович
  • Кузин Евгений Иванович
SU1091989A1
Способ разливки металла 1984
  • Сучков Александр Георгиевич
  • Изотов Александр Николаевич
  • Марков Альфред Владимирович
  • Асташкин Юрий Сергеевич
  • Абрамов Олег Владимирович
  • Пилюшенко Виталий Лаврентьевич
  • Манохин Анатолий Иванович
  • Таран Виктор Павлович
  • Кондратюк Анатолий Михайлович
SU1201047A1
Способ получения отливок 1988
  • Клепиков Сергей Анатольевич
  • Авилов Николай Александрович
  • Голубев Александр Александрович
  • Енютин Леонид Иванович
  • Саратовский Евгений Геннадиевич
SU1523250A1

Иллюстрации к изобретению RU 2 025 212 C1

Реферат патента 1994 года СПОСОБ КОМБИНИРОВАННОЙ ОБРАБОТКИ СЛИТКА В МЕТАЛЛИЧЕСКОЙ ФОРМЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Использование: в металлургии, а конкретно при производстве слитков или отливок из различных металлов и сплавов, а также в литейном производстве черных и цветных металлов. Сущность изобретения: способ комбинированной обработки слитка в металлической форме включает последовательную ультразвуковую обработку по мере заполнения формы металлом, причем ввод акустической энергии осуществляют как непосредственно через вмораживаемую в затвердевающий металл насадку, так и опосредованно через стенки формы, при этом ультразвуковое воздействие на стенки формы ведут с момента начала поступления металла в форму до окончания кристаллизации, и непосредственный ввод акустической энергии в затвердевающий металл ведут по мере заполнения формы, что позволяет повысить качество слитка за счет повышения эффективности ультразвуковой обработки. 3 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 025 212 C1

1. Способ комбинированной обработки слитка в металлической форме, включающий ультразвуковую обработку металла с начала поступления его в форму и до окончания кристаллизации непосредственно через волновод, вмораживаемый в слиток, отличающийся тем, что ультразвуковую обработку дополнительно осуществляют волноводом через стенки формы. 2. Способ по п.1, отличающийся тем, что ультразвуковую обработку слитка прямоугольного сечения, имеющего соотношения сторон более 1 : 5, через волновод, вмораживаемый в слиток, ведут со стороны узких стенок, а дополнительную ультразвуковую обработку ведут через широкие стенки. 3. Способ по п. 1, отличающийся тем, что слитки круглого сечения и слитки прямоугольного сечения, имеющие соотношение сторон от 1 : 1 до 1 : 5, подвергают ультразвуковой обработке через волновод, вмораживаемый в слиток, и дополнительной ультразвуковой обработке через стенки при чередовании установки их волноводов по высоте формы и по ее периметру. 4. Устройство для ультразвуковой обработки слитка в металлической форме, содержащее преобразователь, соединенный через волновод с насадкой, отличающееся тем, что насадка выполнена из металла, имеющего химический состав, аналогичный металлу слитка.

Документы, цитированные в отчете о поиске Патент 1994 года RU2025212C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Патент Великобритании N 1594977, кл
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1

RU 2 025 212 C1

Авторы

Марков А.В.

Петухов В.И.

Асташкин Ю.С.

Ракицкий А.Н.

Якименко И.Л.

Даты

1994-12-30Публикация

1992-09-08Подача