СПОСОБ ПОЛУЧЕНИЯ ТУГОПЛАВКИХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В РЕЖИМЕ ГОРЕНИЯ Российский патент 1996 года по МПК C01B31/30 

Описание патента на изобретение RU2054376C1

Изобретение относится к способу получения неорганических соединений и может быть использовано в химической и машиностроительной промышленности.

Известен способ получения тугоплавких неорганических соединений локальным воспламенением реакционной смеси, содержащей металлы III-IV и неметаллы III-IV групп, в замкнутом объеме с последующим высокотемпературным реагированием в режиме горения [1]
Недостатком данного способа является его цикличность и неоднородность по дисперсному составу получаемого соединения.

Наиболее близким к изобретению является способ получения тугоплавких неорганических соединений в режиме горения путем непрерывной подачи исходной экзотермической смеси в зону горения реактора и ее термообработки в указанном режиме с последующим непрерывным отводом полученного соединения [2]
Недостатком известного способа является невысокий выход целевого продукта и его неоднородность по фракционному составу из-за нестабильности условий горения.

Целью изобретения является повышение выхода целевого продукта и улучшения его фракционного состава за счет повышения стабильности условий горения.

Это достигается тем, что в способе получения тугоплавких неорганических соединений в режиме горения, включающем непрерывную загрузку в реактор исходной смеси компонентов, составляющих соединение, подачу указанной смеси в зону горения и ее термообработку в названном режиме с последующей непрерывной выгрузкой полученного соединения согласно изобретению исходную смесь в процессе загрузки подают на боковую поверхность валка реактора, затем нагревают ее до температуры, обеспечивающей расположение фронта горения на постоянном расстоянии от точки подачи смеси, после чего подогретую смесь подают в зону горения, расположенную также на боковой поверхности валка, причем линейную скорость ее подачи в зону горения выбирают из условий:
vo < v < vm, (1) где vo линейная скорость адиабатического горения исходной смеси при нормальных условиях, см/с;
v линейная скорость подачи исходной смеси в зону горения, см/с;
vm максимально допустимая линейная скорость подачи исходной смеси в зону горения, определяемая как ближайшей к vo корень уравнения:
F + -4 F 0 (2) где F +
β 1-exp-
Tг=To +
F функция переменных R, Tг, , E, α, c, ρ, β;
β- функция переменных α, χ, c, ρ, vm;
Тг температура горения, К;
безразмерная скорость;
То температура окружающей среды, К;
R универсальная газовая постоянная, кал/моль.К;
Q теплотворная способность смеси, кал /г;
C теплоемкость смеси, кал/г·К;
ρ плотность смеси, г/см3;
К энергия активации экзотермического химического превращения смеси, кал/моль;
α 1- коэффициент теплопотерь боковой поверхности валка реактора, кал/см2·с·К;
α коэффициент теплообмена между смесью и боковой поверхностью валка реактора, кал/см2·с·К;
χ расстояние между точками подачи исходной смеси на валок реактора и выгрузки соединения, см.

Линейную скорость адиабатического горения исходной смеси при нормальных условиях вычисляют по скорости Зельдовича для начальной температуры То
vo exp- To + , (3) где Ко предэкспонент, I/с;
λ коэффициент теплопроводности смеси, кал/см·с·К.

На продукт горения перед выгрузкой из реактора воздействуют вторым валком усилием 10-1000 кг/см2.

На чертеже представлено изображение реактора, в котором реализуют способ по изобретению.

Исходную экзотермическую смесь при помощи загрузочного устройства 1 подают на валок 2, который предварительно нагревают элементом 3. На валке 2 за счет его движения загружаемая смесь располагается в виде слоя 4. Устройством 5 в зоне А-Б слоя смеси инициируют процесс горения. На прореагировавшую смесь воздействуют вспомогательным валком 6 усилием от 10 до 1000 кг/см2, регулируемые пружинным механизмом 7. Готовый продукт 8 поступает в приемное устройство 9, налипший на валки продукт отделяется скребками 10. Валки заключены в кожух 11, в который через патрубок 12 вводят нейтральный газ для изоляции готового продукта от атмосферного воздуха.

Зона А-Б представляет собой зону автостабилизации фронта горения относительно точки В загрузочного устройства.

Если тепло, выделяемое при синтезе тугоплавкого неорганического соединения, достаточно для поддержания режима автостабилизации горения, то нагревательный элемент 3 отключают, если нет, то снижают его нагрев до величины, необходимой для создания условий режима автостабилизации горения.

Сущность автостабилизации заключается в следующем.

Если фронт горения при увеличении по каким-либо причинам скорости горения приблизился к загрузочному устройству, то уменьшится расстояние между фронтом горения и загрузочным устройством. Это, в свою очередь, уменьшит время контакта слоя экзотермической смеси с поверхностью, максимальную температуру его подогрева и, следовательно, скорость горения экзотермической смеси. Уменьшение скорости горения переместит фронт горения в противоположную от загрузочного устройства сторону. В том случае, когда фронт горения удалится от места загрузки, то время контакта с поверхностью валка, температура и скорость горения смеси увеличатся и фронт горения вернется в первоначальное положение. Таким образом, фронт горения на поверхности валка колеблется относительно некоторого равновесного положения.

П р и м е р 1. Берут 1 кг титана марки ПТХ-5-1 Опытного металлургического завода дисперсностью 0,45-0,08 мм и 0,25 кг технического углерода марки ПМ 15ТС, перемешивают в смесителе в течение 8 ч. Подготовленная таким образом смесь, а также используемый в примере валковый реактор и окружающая среда имеют следующие характеристики:
плотность исходной смеси ρ 5 г/см3.

температура горения исходной смеси Тг 3500 К
линейная скорость адиабатического горения исходной смеси при нормальных условиях, рассчитанная по (3) vo 3 см/с
теплотворная способность исходной смеси Q 640 кал/г
теплоемкость исходной смеси с 0,2 кал/г·К
энергия активации экзотермического химического превращения исходной смеси Е 4500 кал/моль,
коэффициент теплопотерь боковой поверхности валка реактора α1= 0,005 кал/см2·с·К
коэффициент теплообмена между исходной смесью и боковой поверхностью валка реактора α 0,45 кал/см2·с·К
расстояние между точками подачи исходной смеси на валок реактора и выгрузки готового продукта χ= 10 см
температура окружающей среды То300 К
универсальная газовая постоянная К 2 кал/моль·К
предэкспонент Ко 3100 1/с
коэффициент теплопроводности смеси, λ= 0,0162 кал/см·с·К.

Подставляя в формулу (2) числовые значения указанных параметров, определяют с помощью ЭВМ vm, которая для данной смеси равна 5,1 см/с. Подставляя числовые значения vo и vm в (1), выбирают v в интервале 3 < v < 5,1 (см/с).

Исходную смесь помещают в загрузочное устройство 1 валкового реактора и приводят в движение валок 2 с линейной скоростью перемещения его поверхности v 3,5 см/с, предварительно нагрев его с помощью нагревательного элемента 3 до температуры Т 1200 К.

Из загрузочного устройства 1 смесь поступает на валок 2 в виде ленты 4, в которой при достижении ею зоны реакции А-Б инициируют процесс горения с помощью устройства 5. После синтеза на продукт 8 воздействуют вспомогательным валком 6 усилием 10 кг/см2, которое регулируют с помощью пружины 7, что способствует более полному превращению смеси. Затем готовый продукт 8 собирают в приемное устройство 9. Полученный продукт измельчают в течение 1 ч с загрузкой шаров в весовом соотношении к порошку 5:1.

Готовый материал представляет собой порошок черного цвета, состоящий из однородных частиц карбида титана. Выход TiC 96% интервал зернистости 0,5-15 мкм.

В таблице представлены данные по выходу и фракционному составу, полученные по изобретению тугоплавких неорганических соединений.

Из представленных в таблице данных следует, что изобретение позволяет получить различные тугоплавкие неорганические соединения, в частности карбиды, бориды, силициды, сложные карбиды и т.д. с выходом целевого продукта не менее 96% Порошки однородны по фракционному составу, способ легко автоматизируется.

Похожие патенты RU2054376C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТУГОПЛАВКИХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В РЕЖИМЕ ГОРЕНИЯ 1991
  • Мержанов А.Г.
  • Боровинская И.П.
  • Копыт Ю.И.
  • Ратников В.И.
  • Шкадинский К.Г.
  • Симонов А.М.
  • Озерковская Н.И.
RU2054377C1
СПОСОБ ПОЛУЧЕНИЯ ТУГОПЛАВКИХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В РЕЖИМЕ ГОРЕНИЯ 1991
  • Мержанов А.Г.
  • Боровинская И.П.
  • Копыт Ю.И.
  • Ратников В.И.
  • Шкадинский К.Г.
  • Симонов А.М.
  • Озерковская Н.И.
  • Исмайлов Ф.Ф.
RU2069175C1
СПОСОБ ПОЛУЧЕНИЯ ТУГОПЛАВКОГО МАТЕРИАЛА 1988
  • Буров Ю.М.
  • Борисов Е.Н.
  • Столин А.М.
  • Ратников В.И.
  • Боровинская И.П.
  • Мержанов А.Г.
  • Бучацкий Л.М.
RU2072320C1
СПОСОБ ПОЛУЧЕНИЯ СИЛИЦИДА МАГНИЯ 1995
  • Вершинников В.И.
  • Боровинская И.П.
RU2083492C1
СПОСОБ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНОГО МОНОКРИСТАЛЛИЧЕСКОГО ПОРОШКА ДИБОРИДА МЕТАЛЛА 1995
  • Балашов В.Б.
  • Кирдяшкин А.И.
  • Максимов Ю.М.
  • Назыров И.Р.
RU2087262C1
СПОСОБ ПОЛУЧЕНИЯ ГРАФИТОПОДОБНОГО НИТРИДА БОРА 1998
  • Боровинская И.П.
  • Вершинников В.И.
  • Мержанов А.Г.
RU2130336C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА СИАЛОНА 1990
  • Мержанов А.Г.
  • Боровинская И.П.
  • Лорян В.Э.
  • Смирнов К.Л.
RU1774612C
СПОСОБ ПОЛУЧЕНИЯ ГРАФИТОПОДОБНОГО НИТРИДА БОРА 1999
  • Боровинская И.П.
  • Мержанов А.Г.
  • Хуртина Г.Г.
RU2163562C1
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ФЕРРОМОЛИБДЕНА В РЕЖИМЕ ГОРЕНИЯ 1990
  • Силяков С.Л.
  • Юхвид В.И.
RU2044791C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО МАТЕРИАЛА И МАТЕРИАЛ, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 2000
  • Уваров В.И.
  • Боровинская И.П.
  • Мержанов А.Г.
RU2175904C2

Иллюстрации к изобретению RU 2 054 376 C1

Реферат патента 1996 года СПОСОБ ПОЛУЧЕНИЯ ТУГОПЛАВКИХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В РЕЖИМЕ ГОРЕНИЯ

Использование: получение керамических материалов и твердых сплавов. Сущность изобретения: 1 кг титана смешивают с 0,25 кг технического углерода, смесь непрерывно подают в валковый реактор. Зона горения расположена на боковой поверхности валка реактора. Перед подачей в зону горения смесь нагревают до 1200 К, что обеспечивает расположение фронта горения на постоянном расстоянии от точки ее подачи на валок. Скорость подачи смеси в зону горения определяют из условия, приведенного в формуле изобретения. На продукт горения воздействуют усилием 10 - 1000 кг/см2. Готовый продукт - порошок черного цвета из однородных частиц карбида титана. Выход - 96 - 99%. 1 ил., 1 табл.

Формула изобретения RU 2 054 376 C1

СПОСОБ ПОЛУЧЕНИЯ ТУГОПЛАВКИХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В РЕЖИМЕ ГОРЕНИЯ, включающий непрерывную загрузку в реактор исходной смеси компонентов, составляющих соединение, подачу указанной смеси в зону горения и ее термообработку в названном режиме с последующей непрерывной выгрузкой полученного соединения, отличающийся тем, что, с целью повышения выхода и улучшения фракционного состава соединения за счет повышения стабильности условий горения, исходную смесь в процессе загрузки подают на боковую поверхность валка реактора, затем нагревают ее до температуры, обеспечивающей расположение фронта горения на постоянном расстоянии от точки подачи смеси, после чего подогретую смесь подают в зону горения, расположенную также на боковой поверхности валка, причем линейную скорость v ее подачи в зону горения определяют из условия
v0 < v < vm,
где v0 - линейная скорость адиабатического горения исходной смеси при нормальных условиях, см/с;
vm - максимально допустимая линейная скорость подачи исходной смеси в зону горения, определяемая как ближайший к v0 корень уравнения





F - функция переменных
β - функция переменных a, x, C, ρ, vm;
Tг - температура горения, K;
Tо - температура окружающей среды, K;
- безразмерная скорость;
R - универсальная газовая постоянная, кал/моль • К;
q - теплотворная способность смеси, кал/г;
C - теплоемкость смеси, кал/г • К;
ρ - плотность смеси, г/см3;
E - энергия активации экзотермического химического превращения смеси, кал/моль;
a1 - коэффициент теплопотерь боковой поверхности валка реактора, кал/см2 • с • К;
α - коэффициент теплообмена между смесью и боковой поверхностью валка реактора, кал/см2 • с • К;
x - расстояние между точками подачи исходной смеси на валок реактора и вырузки полученного соединения, см,
а на продукт горения выгрузкой из реактора воздействуют вторым валком с усилием 10 - 1000 кг/см2.

Документы, цитированные в отчете о поиске Патент 1996 года RU2054376C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
СПОСОБ СИНТЕЗА ТУГОПЛАВКИХ НЕОРГАНИЧЕСКИХСОЕДИНЕНИЙ 0
SU255221A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Пожарный двухцилиндровый насос 0
  • Александров И.Я.
SU90A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 054 376 C1

Авторы

Мержанов А.Г.

Боровинская И.П.

Копыт Ю.И.

Ратников В.И.

Шкадинский К.Г.

Симонов А.М.

Озерковская Н.И.

Измайлов Ф.Ф.

Даты

1996-02-20Публикация

1991-05-16Подача