Изобретение относится к области нефтеперерабатывающей, химической и нефтехимической промышленности, конкретно к способам фракционирования мазута.
Известен способ фракционирования мазута в сложной колонне с подачей в низ колонны водяного пара [1]
Прототипом предлагаемого изобретения является способ фракционирования мазута перегонкой нагретого сырья в вакуумной колонне, снабженной контактными устройствами, при использовании циркуляционных орошений и с отбором из укрепляющей секции дистиллятных фракций, а также при подаче испаряющего агента в низ колонны и отпарке легких компонентов в отгонной секции колонны, оборудованной перекрестно-точными контактными устройствами, содержащими вертикально расположенные насадочные блоки, распределители жидкости в виде перфорированных распределительных плит с отражательными пластинами и сливными планками, с последующим выводом остатка перегонки [2] При этом наблюдаются недостаточно высокие отбор и качество дистиллятных фракций, не получаются высококипящая дистиллятная фракция и тяжелый остаток вследствие смещения высококипящей дистиллятной фракции и остатка.
Целью изобретения является увеличение отбора и улучшение качества дистиллятных фракций, получение высококипящей дистиллятной фракции и тяжелого остатка.
Поставленная цель достигается тем, что в способе фракционирования мазута перегонкой нагретого сырья в вакуумной колонне, снабженной контактными устройствами, при использовании циркуляционных орошений и с отбором из укрепляющей секции дистиллятных фракций, а также при подаче испаряющего агента в низ колонны и отпарке легких компонентов в отгонной секции колонны, оборудованной перекрестно-точными контактными устройствами, содержащими вертикально расположенные насадочные блоки, распределители жидкости в виде перфорированных распределительных плит с отражательными пластинами и сливными планками, с последующим выводом остатка перегонки, при отпарке легких фракций в отгонной секции колонны предотвращают смешение тяжелого кубового продукта, поступающего с питанием, с потоком жидкости, стекающей с нижнего контактного устройства укрепляющей секции, для чего тяжелый продукт и жидкость из укрепляющей секции направляют раздельными параллельными потоками на перекрестно-точные контактные устройства отгонной секции, обеспечивающие раздельное движение потоков за счет разделения устройств на две части непроницаемой для прохода жидкости вертикальной перегородкой, и при этом используют один и тот же испаряющий агент, а в результате выводят с низа колонны дополнительный отпаренный поток в виде высококипящей дистиллятной фракции.
Отличием предлагаемого изобретения является предотвращение смешения тяжелого кубового продукта, поступающего с питанием, с потоком жидкости, стекающей с нижнего контактного устройства укрепляющей секции при отпарке легких фракций в отгонной секции колонны, за счет направления тяжелого продукта и жидкости из укрепляющей секции раздельными параллельными потоками на перекрестно-точные контактные устройства отгонной секции, обеспечивающие раздельное движение потоков за счет разделения устройств на две части непроницаемой для прохода жидкости вертикальной перегородкой, при использовании одного и того же испаряющего агента, и вывод в результате с низа колонны дополнительного отпаренного потока в виде высококипящей дистиллятной фракции.
Предлагаемый способ в отличие от известных в науке и технике обеспечивает увеличение отбора и улучшение качества дистиллятных фракций и получение высококипящей дистиллятной фракции и тяжелого остатка.
На чертеже представлена схема, иллюстрирующая способ фракционирования мазута.
Нагретый в нагревателе 1 мазут по линии 2 вводят в вакуумную колонну 3, снабженную контактными устройствами в укрепляющей и отгонной секциях. Из колонны 3 по линии 5 выводят верхнее циркуляционное орошение, охлаждают в холодильнике 6 и по линии 7 возвращают в колонну. С верха колонны 3 по линии 8 выводят пары, конденсируют в конденсаторе 9 и подают в емкость 10. С верха емкости по линии 11 выводят неконденсируемый пар в вакуум-создающую систему, с низа емкости по линии 12 выводят конденсат. Из колонны 3 по линии 13 выводят боковой погон, часть его охлаждают в холодильнике 14 и по линии 15 возвращают в колонну в качестве нижнего циркуляционного орошения, а балансовый избыток выводят по линии 16 в качестве дистиллятной фракции. С низа колонны по линии 17 выводят остаток. Для отпарки легких фракций из остатка на контактных устройствах отгонной секции в низ колонны по линии 18 вводят испаряющий агент, например водяной пар.
При отпарке легких фракций в отгонной секции колонны предотвращают смешение тяжелого кубового продукта, поступающего с питанием, с потоком жидкости, стекающей по линии 19 с нижнего контактного устройства 4 укрепляющей секции, для чего тяжелый продукт и жидкость из укрепляющей секции направляют раздельными параллельными потоками на перекрестно-точные контактные устройства 20 отгонной секции, обеспечивающие раздельное движение потоков за счет разделения устройств на две части непроницаемой для прохода жидкости вертикальной перегородкой 21, и при этом используют один и тот же испаряющий агент, а в результате по линии 22 выводят с низа колонны дополнительный отпаренный поток в виде высококипящей дистиллятной фракции.
Изобретение иллюстрируется следующими примерами. Были проведены расчеты вакуумной колонны по предлагаемому способу и прототипу. Диаметр верхней части колонн равен 2,6 м, в ней расположены четыре односливные клапанные тарелки; диаметр средней части 6,4, в которой расположены три двухсливные клапанные тарелки, три двухсливные ситчатые тарелки и отбойно-ректификационное контактное устройство; диаметр нижней части (отгонной секции) колонны 2,6 м, в которой расположено четыре перекрестно-точных насадочных устройства. В расчетах массо- и теплообменная эффективность работы четырех односливных клапанных тарелок первого циркуляционного орошения и трех клапанных тарелок второго циркуляционного орошения принята равной 0,65, что соответствует КПД относительно теоретической тарелки 0,50, массо- и теплообменный КПД трех ситчатых тарелок принят равным 0,40, что соответствует КПД относительно теоретической тарелки 0,25. Массо- и теплообменный КПД двух перекрестно-точных насадочных блоков отбойно-ректификационного контактного устройства принят равным 0,85 и четырех блоков отгонной секции 0,75, что соответствует КПД относительно теоретической тарелки 0,70 и 0,60 соответственно. Давление верха колонны принято равным 0,006 МПа, перепад давления на тарелках 0,006 МПа, насадочных блоках 0,0003 МПа.
Пример 1 (по предлагаемому способу). Исходное сырье мазут в количестве 145 т/ч нагревают в печи и с температурой 365oС подают между четвертым и пятым контактными устройствами (счет с низа) колонны. С верха колонны в количестве 1,74 т/ч с температурой 119oС выводят пары и направляют в конденсатор. Парожидкостную смесь из конденсатора с температурой 35oС подают в емкость. С низа емкости в количестве 1,7 т/ч выводят конденсат, содержащий 1,2 т/ч воды, а с верха емкости в количестве 0,04 т/ч выводят несконденсированные пары и газы разложения в вакуум-создающую систему. С четвертой тарелки (счет с верха) колонны выводят 55 т/ч верхнего (первого) циркуляционного орошения, охлаждают и с температурой 90oС подают на верх колонны. С седьмой тарелки колонны выводят боковой погон. Часть его в количестве 75 т/ч охлаждают и с температурой 120oС подают на пятую тарелку колонны в качестве нижнего (второго) циркуляционного орошения, а балансовый избыток выводят в количестве 55,4 т/ч в качестве фр. 350-460oС.
В качестве испаряющего агента на смешение с сырьем подают 0,2 т/ч нагретого до 400oС водяного пара и в низ колонны вводят 1 т/ч водяного пара. С низа колонны выводят остаток (гудрон).
При отпарке легких фракций в отгонной секции колонны предотвращают смешение тяжелого кубового продукта, поступающего с питанием, с потоком жидкости, стекающей с нижнего контактного устройства укрепляющей секции, для чего тяжелый продукт и жидкость из укрепляющей секции направляют раздельными параллельными потоками на перекрестно-точные контактные устройства отгонной секции, обеспечивающие раздельное движение потоков за счет разделения устройств на две части непроницаемой для прохода жидкости вертикальной перегородкой, и при этом используют один и тот же испаряющий агент, а в результате выводят с низа колонны в количестве 6,18 т/ч дополнительный отпаренный поток в виде высококипящей дистиллятной фракции 460-550oС.
Основные режимные параметры работы колонны по примеру 1 приведены в табл.1, фракционный состав продуктов разделения в табл.2.
Пример 2 (по прототипу). Процесс проводят в условиях примера 1,за исключением предотвращения смешения тяжелого кубового продукта, поступающего с питанием, с потоком жидкости, стекающей с нижнего контактного устройства укрепляющей секции при отпарке легких фракций в отгонной секции колонны, за счет направления тяжелого продукта и жидкости из укрепляющей секции раздельными параллельными потоками на перекрестно-точные контактные устройства отгонной секции, обеспечивающие раздельное движение потоков за счет разделения устройств на две части непроницаемой для прохода жидкости вертикальной перегородкой, при использовании одного и того же испаряющего агента, и вывода в результате с низа колонны дополнительного отпаренного потока в виде высококипящей дистиллятной фракции. Основные режимные параметры работы колонны по примеру 2 приведены в табл.1, фракционный состав продуктов разделения в табл.3.
Из представленных данных следует, что пример 1 по сравнению с примером 2 позволяет увеличить отбор и улучшить качество дистиллятных фракций, получить высококипящую дистиллятную фракцию и тяжелый остаток. Отбор дистиллятных фракций увеличивается с 52,36 до 62,08 т/ч. Содержание в конденсате паров фракции 350oС к. к. уменьшается с 4,75 до 4,25 мас% во фракции 350-460oС фракции н.к. 350oС c 21,72 до 20,58 мас% фракции 460oС к.к. с 15,59 до 14,69 мас% Получается 6,18 т/ч высококипящей дистиллятной фракции 460-550oС с содержанием фракции н.к. 460oС -12,11% фракции 550oС к.к. 11,82% и тяжелый остаток. Содержание в нем фракции н.к. 460oС снижается с 12,47 до 8,79 мас%
Увеличение отбора и улучшение качества дистиллятных фракций, получение высококипящей дистиллятной фракции и тяжелого остатка делают целесообразным использование предлагаемого изобретения при фракционировании мазута.
Например, реализация предлагаемого способа на одной вакуумной колонне позволяет получить дополнительно 25,2 тыс. т/год фракции 350-360oС и 49,4 тыс. т/год фракции 460-550oС и снизить содержание фракции н.к. 460oС в остатке с 12,47 до 8,79 мас%
название | год | авторы | номер документа |
---|---|---|---|
Способ получения нефтяных фракций | 1989 |
|
SU1736997A1 |
СПОСОБ РАЗДЕЛЕНИЯ УГЛЕВОДОРОДНОЙ СМЕСИ | 1994 |
|
RU2074227C1 |
Способ перегонки нефти | 1988 |
|
SU1664810A1 |
Способ перегонки нефти | 1988 |
|
SU1595879A1 |
Способ перегонки мазута в вакуумной колонне | 1989 |
|
SU1643590A1 |
Способ перегонки нефти | 1988 |
|
SU1587060A1 |
Способ переработки мазута | 1987 |
|
SU1447837A1 |
Способ перегонки нефти | 1989 |
|
SU1685973A1 |
Способ получения нефтяных фракций | 1988 |
|
SU1541237A1 |
СПОСОБ ПОЛУЧЕНИЯ НЕФТЯНЫХ ФРАКЦИЙ | 1997 |
|
RU2138536C1 |
Использование: разделение мазута на фракции в вакуумной колонне, оборудованной насадочными блоками. Сущность изобретения: перегонку мазута ведут в вакуумной колонне, оборудованной контактными устройствами с отбором дистиллятных фракций и остатка перегонки. При этом в отгонной секции колонны используют перекрестно-точные контактные устройства, содержащие вертикально расположенные насадочные блоки, распределители жидкости в виде перфорированных распределительных плит с отражательными пластинами и сливными планками. При отпарке легких фракций в отгонной секции колонны предотвращают смешение тяжелого кубового продукта, поступающего с питанием, с потоком жидкости, стекающей с нижнего контактного устройства укрепляющей секции, для чего тяжелый продукт и жидкость из укрепляющей секции направляют раздельными параллельными потоками на перекрестно-точные контактные устройства отгонной секции. Раздельное движение потоков обеспечивают за счет разделения устройств на две части непроницаемой для прохода жидкости вертикальной перегородкой и при этом используют один и тот же испаpяющий агент. В результате выводят с низа колонны дополнительный отпаренный поток в виде высококипящей дистиллятной фракции. 1 ил., 3 табл.
Способ фракционирования мазута перегонкой нагретого сырья в вакуумной колонне, снабженной контактными устройствами при использовании циркуляционных орошений и с отбором из укрепляющей секции дистиллятных фракций, а также при подаче испаряющего агента в низ колонны и отпарке легких компонентов в отгонной секции колонны, оборудованной перекрестноточными контактными устройствами, содержащими вертикально расположенные насадочные блоки, распределители жидкости в виде перфорированных распределительных плит с отражательными пластинами и сливными планками, с последующим выводом остатка перегонки, отличающийся тем, что при отпарке легких фракций в отгонной секции колонны предотвращают смешение тяжелого кубового продукта, поступающего с питанием, с потоком жидкости, стекающей с нижнего контактного устройства укрепляющей секции, для чего тяжелый продукт и жидкость из укрепляющей секции направляют раздельными параллельными потоками на перекрестноточные контактные устройства отгонной секции, обеспечивающие раздельное движение потоков за счет разделения устройств на две части непроницаемой для прохода жидкости вертикальной перегородкой, и при этом используют один и тот же испаряющий агент, в результате выводят с низа колонны дополнительный отпаренный поток в виде высококипящей дистиллятной фракции.
Александров И.А | |||
Перегонка и ректификация в нефтепераработке | |||
М.: Химия, 1981, с.175 | |||
Резяпов Р.Н | |||
и др | |||
Получение дизельного топлива и тяжелого вакуумного газойля в насадочной перекрестно-точной вакуумной колонне, в сб | |||
"Интенсификация процессов переработки тяжелых нефтяных остатков" | |||
Тез | |||
докл | |||
Прибор для нагревания перетягиваемых бандажей подвижного состава | 1917 |
|
SU15A1 |
Уфа, 1987, с.62. |
Авторы
Даты
1996-10-10—Публикация
1993-06-15—Подача