СПОСОБ ПОДАЧИ СМАЗОЧНО-ОХЛАЖДАЮЩИХ ТЕХНОЛОГИЧЕСКИХ СРЕДСТВ (ВАРИАНТЫ) Российский патент 1997 года по МПК B23Q11/10 

Описание патента на изобретение RU2072291C1

Изобретение относится к машиностроению, а именно к способам подачи смазочно-охлаждающих технологических средств (СОТС), применяемых для механической обработки материалов и в узлах трения.

Известный способ подачи СОЖ в зону резания представляет собой полив свободно падающей струей смазочно-охлаждающей жидкости области контактирования режущего инструмента с обрабатываемым материалом [1]
Основным недостатком этого способа является большой расход и загрязнения СОЖ вследствие того, что значительное количество СОЖ не принимает участия непосредственно в процессе резания, а просто омывает окружающую зону резания и разбрызгивается вращающимися частями станка. Кроме того, участвуя в процессе резания, СОЖ обедняется активными компонентами, что требует постоянного наблюдения за концентрацией состава и периодической его корректировки. Одновременно с этим значительное количество СОЖ, не отработавшей свой ресурс, приходится утилизировать вследствие ее бактерицидного поражения.

В промышленности используется способ нанесения пастообразной смазки на режущие кромки инструмента после каждого рабочего прохода инструмента (в частности, сверла) [2]
Одним из основных недостатков применения этого способа является низкая производительность труда вследствие больших затрат времени на периодическое нанесение пастообразной СОТС на рабочие поверхности инструментов.

Наиболее близким к предлагаемому решению по технической сущности и достигаемому эффекту является способ подачи смазочно-охлаждающей жидкости (СОЖ) в виде микрокапсул, имеющих желатиновую оболочку [3]
Основными недостатками этого способа являются следующие:
данные микрокапсулы не имеют направленного движения к зоне резания, что значительно снижает эффективность их использования;
желатиновая оболочка имеет температуру разрушения ниже 60oС, что много меньше температур, возникающих в зоне резания не только твердосплавными, но и быстрорежущими инструментами, а, следовательно, данные микрокапсулы вскроются на значительном расстоянии от зоны контакта металлических поверхностей. В результате этого эффект от использования микрокапсул нивелируется до значений, соизмеримых с традиционно используемым способом свободного полива;
капсулы с желатиновыми оболочками можно использовать лишь для ограниченной номенклатуры капсулируемых СОЖ в силу низкой химической стойкости желатина;
микрокапсулы используются только для капсулирования жидкостей, которые являются лишь одной из групп СОТС.

Задачей изобретения является разработка способа подачи СОТС (жидких, твердых, пастообразных их композиций) или отдельных их компонентов, применяемых для механической обработки или в узлах трения; повышение стойкости инструментов.

Поставленная задача может быть решена тремя путями. Во всех случаях СОТС (или отдельные компоненты СОТС) подаются в зону контакта в виде микрокапсул, которые представляют собой мелкие количества вещества СОТС, заключенные в тонкую оболочку пленкообразующего материала. Подача микрокапсул в зону контакта осуществляется посредством жидкого носителя свободно падающей струей. В первом случае в состав микрокапсул дополнительно вводят вещество, обладающее сегнетоэлектрическими свойствами, частицы которого имеют размеры 10-50 нм; во втором в состав жидкого носителя дополнительно вводят поверхностно-активные вещества (1,0-20,0 от объема жидкого носителя); в третьем в состав микрокапсул дополнительно вводят сегнетоэлектрики с размером частиц 10-50 нм, а в состав жидкого носителя дополнительно вводят поверхностно-активное вещество в количестве 1,0-20,0 объема жидкого носителя. Оболочка микрокапсул сформирована из полимерных материалов, температура разрушения которых варьируются в широких пределах от 50-60oС до 240-270oС. Минимальный размер микрокапсулы составляет величину порядка 1,0 мкм, максимальный 500,0 мкм. Движение микрокапсул к зоне контакта осуществлялось либо посредством электромагнитного поля, образованного в результате возникновения потенциала в зоне контакта взаимодействующих тел, либо дополнительно приложенного к одному из контактирующих металлов потенциалом величиной до 36,0 В.

В первом случае, в качестве сегнетоэлектрических присадок, как элементов способных ориентироваться и двигаться в электромагнитных полях, использовались представители ферромагнитных веществ Fe2O3, FeI, FeCr ГОСТ 22187-76 с величиной частиц 10-50 нм. При возникновении естественного электрического потенциала в зоне контакта или дополнительно поданном на одно из контактирующих металлических тел (например, на резец или обрабатываемую деталь) вокруг зоны контакта возникает электромагнитное поле. При воздействии этого поля на сегнетоэлектрики, заключенные в микрокапсулах, последние ориентируются и начинают двигаться вдоль силовых линий поля к зоне контакта.

Во втором случае, в качестве поверхностно-активных веществ использовались масло касторовое сульфированное ГОСТ 6990-75 и Синтаф-124К ТУ 38.507-63-144-90. При добавлении ПАВ в жидкость-носитель, происходит процесс обволакивания микрокапсул, находящихся в жидком носителе, молекулами ПАВ (мицелообразование). Это приводит к возникновению поверхностного заряда на каждой мицеле-микрокапсуле. Наличие естественного потенциала в зоне контакта или специально поданного на одно из контактирующих металлических тел приводит к тому, что полученные мицелы, аналогично предыдущему случаю, начинают двигаться к зоне контакта.

В третьем случае, в качестве сегнетоэлектриков, как элементов способных ориентироваться и двигаться в электромагнитных полях, использовались ферромагнитные вещества Fe2O3, FeI, FeCr ГОСТ 22187-76 с величиной частиц 10-50 нм, а в качестве ПАВ масло касторовое сульфированное ГОСТ 6990-75 и Синтаф 124К ТУ 38.507-63-144-90. Возникновение естественного электрического потенциала в зоне контакта или подача дополнительного потенциала на одно из контактирующих тел приводит к тому, что микрокапсула под действием суммарного эффекта сегнетоэлектрика, заключенного в микрокапсулу при ее изготовлении, и поверхностного заряда мицелы-микрокаспулы, образованной путем обволакивания микрокапсулы ПАВ присутствующим в жидком носителе, получают направленное к зоне контакта движение.

Достаточно высокие температуры плавления оболочек микрокапсул (до 270oС) и наличие поступательного движения микрокапсул в направлении зоны контакта обусловливают вскрытие их непосредственно в зоне взаимодействия контактирующих металлов с одновременным сохранением микрокапсул, находящихся вне этой зоны.

Пример 1. При нарезании напроход резьбы М6х1 в заготовках из нержавеющей тали 12Х18Н10Т ГОСТ 5949-75 толщиной 6,0 мм машинно-ручными метчиками ГОСТ 3266-81 при скорости резания V 0,06 м/с в качестве СОТС использовался пастообразный состав "Прогресс-2" (Авт.свид. СССР N 1269499 кл. С 10 М ДСП). СОТС подавалось в зону резания в микрокапсулах по способу [3] и в микрокапсулах по предлагаемому способу [1] с приложенным к метчику потенциалом 30 В. Микрокапсулы в обоих случаях подавались посредством дистиллированной воды. В качестве сегнетоэлектрика использовался магнетит Fe2O3 с размером частиц 10-15 нм введенный в микрокапсулы при их изготовлении. За критерий износа метчиков принималось двойное увеличение величины крутящего момента. Результаты изменения стойкостных характеристик инструментов приведены в табл.1.

Пример 2. При фрезеровании пазов в углеродистой стали У8 ГОСТ 1435-74 дисковыми фрезами, изготовленными из быстрорежущей стали Р6М5 при глубине резания t 0,5 мм, подаче S 315 мм/мин и скорости резания V 1,5 м/с в качестве СОТС использовалась масляная СОЖ МР-4 ТУ 38.101481-76. СОЖ подавалась в зону резания в микрокапсулах по способу [3] (в качестве жидкого носителя использовалась дистиллированная вода) и в микрокапсулах по предлагаемому способу (2) с приложенным к фрезе потенциалом 30 В (в качестве жидкого носителя использовалась дистиллированная вода с добавкой 15,0 касторового сульфированного масла). За критерий износа принимался суммарный износ зубьев фрезы после 9,0 м резания. Результаты испытаний фрез приведены в табл.2.

Пример 3. При точении титанового сплава ВТ6 ГОСТ 19807-74, ОСТ 1.90173-75 упорнопроходными резцами из быстродействующей тали Р6М5 при глубине резания t 0,5 мм, подаче S 0,1 мм/об и скорости резания V 0,39 м/с в качестве СОТС использовалась водоэмульсионная СОЖ Аквол-6 ТУ 38.10175-82. СОЖ подавалась в зону резания в микрокапсулах по способу [3] (в качестве жидкого носителя использовалась дистиллированная вода) и в микрокапсулах по предлагаемому способу [3] без дополнительного наложения потенциала и с приложенным к резцу потенциалом 30 В (в качестве жидкого носителя использовалась дистиллированная вода с добавкой 15,0 касторового сульфированного масла). В качестве сегнетоэлектрика использовался магнетит Fe2O3 с размером частиц 10-15 нм введенный в микрокапсулы при их изготовлении. За критерий износа принимался износ по задней поверхности резца до достижения фаски износа 0,6 мм. Результаты изменения стойкостных характеристик инструментов приведены в табл.3.

Результаты испытаний при использовании в качестве сегнетоэлектрика FeI и FeCr, а в качестве поверхностно-активного вещества Синтаф 124К близки к приведенным в табл. 1-3.

Похожие патенты RU2072291C1

название год авторы номер документа
СПОСОБ ПОДАЧИ КИСЛОРОДОСОДЕРЖАЩИХ СОТС В ЗОНУ КОНТАКТА МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ 1999
  • Латышев В.Н.
  • Наумов А.Г.
  • Бушев А.Е.
  • Чиркин С.А.
  • Горшков В.В.
  • Прибылов А.Н.
RU2177866C2
СПОСОБ ПОДАЧИ СМАЗОЧНО-ОХЛАЖДАЮЩИХ ТЕХНОЛОГИЧЕСКИХ СРЕДСТВ 2004
  • Латышев Владимир Николаевич
  • Наумов Александр Геннадьевич
  • Пименов Иван Николаевич
  • Минеев Леонтий Иванович
RU2288087C2
СПОСОБ ПОДАЧИ СМАЗОЧНО-ОХЛАЖДАЮЩИХ ТЕХНОЛОГИЧЕСКИХ СРЕДСТВ 2011
  • Наумов Александр Геннадьевич
  • Латышев Владимир Николаевич
  • Клюев Михаил Васильевич
  • Осипов Николай Николаевич
  • Наумова Надежда Ивановна
  • Разумов Андрей Александрович
  • Прибылов Александр Николаевич
RU2524877C2
СПОСОБ ПОДАЧИ СМАЗОЧНО-ОХЛАЖДАЮЩИХ ТЕХНОЛОГИЧЕСКИХ СРЕДСТВ, РЕАЛИЗУЮЩИХ ЭФФЕКТ ИЗБИРАТЕЛЬНОГО ПЕРЕНОСА 2005
  • Наумов Александр Геннадьевич
  • Подгорков Владимир Викторович
  • Латышев Владимир Николаевич
  • Пучков Павел Владимирович
RU2307016C2
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ 1997
  • Латышев В.Н.
  • Наумов А.Г.
  • Чиркин С.А.
  • Оношин Н.М.
  • Прибылов А.Н.
RU2147923C1
СПОСОБ ОХЛАЖДЕНИЯ И СМАЗКИ РЕЖУЩИХ ИНСТРУМЕНТОВ 2008
  • Наумов Александр Геннадьевич
  • Латышев Владимир Николаевич
  • Раднюк Владимир Сергеевич
  • Прибылов Александр Николаевич
  • Курапов Константин Викторович
RU2411115C2
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ИОНИЗИРОВАННЫХ И ОЗОНИРОВАННЫХ СОТС 2004
  • Наумов Александр Геннадьевич
  • Латышев Владимир Николаевич
  • Минеев Леонтий Иванович
  • Прибылов Александр Николаевич
  • Пименов Иван Николаевич
  • Демьяновский Николай Анатольевич
RU2287419C2
Смазочно-охлаждающее технологическое средство для обработки металлов резанием и процессов поверхностного деформирования 2017
  • Полетаев Владимир Алексеевич
  • Ведерникова Ирина Игоревна
  • Шпенькова Елизавета Валерьевна
  • Голяс Антон Андреевич
  • Степанова Татьяна Юрьевна
RU2674162C1
УСТРОЙСТВО ДЛЯ ПОДАЧИ ГАЗООБРАЗНОГО СМАЗОЧНО-ОХЛАЖДАЮЩЕГО ТЕХНОЛОГИЧЕСКОГО СРЕДСТВА (СОТС) ДЛЯ ОХЛАЖДЕНИЯ И СМАЗКИ ИНСТРУМЕНТОВ 2004
  • Латышев Владимир Николаевич
  • Наумов Александр Геннадьевич
  • Аснос Татьяна Михайловна
  • Бахарев Павел Павлович
  • Прибылов Александр Николаевич
RU2288089C2
СПОСОБ ПОЛИРОВАНИЯ ДЕТАЛЕЙ ЛЕПЕСТКОВЫМИ КРУГАМИ 1996
  • Дубровский П.В.
RU2103149C1

Иллюстрации к изобретению RU 2 072 291 C1

Реферат патента 1997 года СПОСОБ ПОДАЧИ СМАЗОЧНО-ОХЛАЖДАЮЩИХ ТЕХНОЛОГИЧЕСКИХ СРЕДСТВ (ВАРИАНТЫ)

Использование: в машиностроении для подачи смазочно-охлаждающих технологических средств (СОТС) или их отдельных компонентов при механической обработке материалов и в узлах трения. Сущность изобретения: в основе положен принцип подачи СОТС в виде микрокапсул, которые представляют собой мелкие количества вещества СОТС, заключенного в тонкую оболочку пленкообразующего вещества. Микрокапсулы подаются в зону контакта посредством жидкого носителя свободно падающей струей. Для придания микрокапсулам движения, направленного в сторону зоны контакта, а также для повышения стойкости и инструментов способ подачи осуществляется тремя способами: в состав микрокапсул вводят дополнительно ферромагнитные присадки, в состав жидкого носителя дополнительно вводят поверхностно-активные вещества, в состав микрокапсул дополнительно вводят ферромагнитные присадки, а в состав жидкого носителя - поверхностно-активные вещества. Направленное движение микрокапсул инициируется либо посредством электро-магнитного поля, образованного в результате возникновения потенциала в зоне контакта взаимодействующих тел, либо потенциала, дополнительно приложенного к одному из контактирующих металлов. 3 с.п. ф-лы, 3 табл.

Формула изобретения RU 2 072 291 C1

1. Способ подачи смазочно-охлаждающих технологических средств (СОТС) или компонентов, применяемых для механической обработки или в узлах трения, при котором СОТС или компоненты подают в зону резания или контакта в виде микрокапсул посредством жидкого носителя, отличающийся тем, что в состав микрокапсул дополнительно вводят ферромагнитные присадки, обладающие сегнетоэлектрическими свойствами. 2. Способ подачи смазочно-охлаждающих технологических средств (СОТС) или компонентов, применяемых для механической обработки или в узлах трения, при котором СОТС или компоненты подают в зону резания или контакта в виде микрокапсул посредством жидкого носителя, отличающийся тем, что в состав жидкого носителя дополнительно вводят поверхностно-активные вещества. 3. Способ подачи смазочно-охлаждающих технологических средств (СОТС) или компонентов, применяемых для механической обработки или в узлах трения, при котором СОТС или компоненты подают в зону резания или контакта в виде микрокапсул посредством жидкого носителя, отличающийся тем, что в состав микрокапсул вводят ферромагнитные присадки, обладающие сегнетоэлектрическими свойствами, а в состав жидкого носителя вводят поверхностно-активные вещества.

Документы, цитированные в отчете о поиске Патент 1997 года RU2072291C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Смазочно-охлаждающая жидкость для механической обработки металлов 1983
  • Садыхов Камиль Исмаил Оглы
  • Алиев Сахиб Мусеиб Оглы
  • Алиев Сафияр Магамед Оглы
  • Гусейнов Новруз Исмаил Оглы
SU1129225A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Смазка для механической обработки металлов 1984
  • Лисина Юлия Ивановна
  • Дигтенко Виталий Григорьевич
  • Коломиец Владимир Владимирович
  • Лашуня Анатолий Николаевич
SU1214740A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Способ подачи смазочно-охлаждающей жидкости 1986
  • Девочкин Андрей Аркадьевич
  • Латышев Владимир Николаевич
  • Годлевский Владимир Александрович
  • Железнов Константин Николаевич
SU1541015A1
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб 1921
  • Игнатенко Ф.Я.
  • Смирнов Е.П.
SU23A1

RU 2 072 291 C1

Авторы

Латышев В.Н.

Наумов А.Г.

Чиркин С.А.

Ключников С.В.

Оношин Н.М.

Даты

1997-01-27Публикация

1994-02-24Подача