Изобретение относится к способу декапирования (очистки поверхности) металлических материалов из стали, особенно из нержавеющей стали.
Способ декапирования может быть осуществлен на металлических материалах из стали, особенно из нержавеющей стали, в промышленной среде, перед выпуском с завода, например, для удаления окалины, но также непрофессионалами в металлургии для зачистки элементов из нержавеющей стали.
Согласно известному способу операция травления нержавеющих сталей заключается в погружении материалов в травящие ванны, содержащие 6-16% азотной кислоты и фтористоводородную кислоту в соотношении 6-16% HNO3 на литр и 1-5% HF на литр, причем температуре использования ванны составляет величину в интервале 40-60oС.
Однако азотная кислота ведет к выделению особенно токсичных паров оксида и диоксида азота, и выделению азотистых соединений, таких, как нитриты и нитраты, в эфлюенты. Если допустимое максимальное предельное содержание нитратов относительно высокое, то эта же норма в отношении нитратов намного более жесткая, т.к. нитриты приводят к образованию вредных нитрозаминов.
В патенте Франции А-2 587 369, кроме того, описывается способ декапирования материалов из нержавеющей стали, в котором используют декапирующую ванну, образованную плавиковой кислотой, железом в виде растворенного трехвалентного железа, причем остальное составляет вода. Ванну используют при температуре 15-70oС. Во время операции или операций декапирования поддерживают содержание трехвалентного железа в ванне с помощью инжекции воздуха или за счет циркуляции со свободным воздухом.
Такой способ обработки на основе плавиковой кислоты имеет недостаток, связанный с тем, что плавиковая кислота опасна при работе с ней, поэтому она не подходит для любых операций очистки методом пульверизации или опрыскивания металлических элементов таких, как резервуар или цистерна.
Также известен из патента Японии А-7547826 способ декапирования металлических материалов из нержавеющей стали, заключающийся в использовании ванны: образованной смесью галогенсодержащих кислот, содержащей в определенном количестве соляную кислоту.
В этом способе декапирования основным агентом, вступающим в химическую реакцию, является соляная кислота, которая реагирует с декапируемым материалом с получением хлорида железа (П) и выделением водорода, согласно реакции:
2HCl + Fe _→ FeCl2+H2
Такой способ, использующий окисляющее воздействие соляной кислоты на декапируемый металл, приводит к большому расходу соляной кислоты, что делает способ дорогостоящим; к сильному выделению водорода, который вызывает опасность взрыва во время использования способа в закрытой среде;к хрупкости обработанной стали из-за промежуточной диффузии атомов водорода в кристаллическую решетку стали.
Целью изобретения является снижение загрязнения окружающей среды.
Эта цель достигается тем, что декапирование металлических материалов из стали, особенно из нержавеющей стали, может быть осуществлено без необходимости использования корродирующей окисляющей кислоты, такой, как HF или HCl, при условии окисления смесью Fe2+ + Fe3+, в которой поддерживают окислительновосстановительный потенциал между определенными значениями, причем ионы Fe2+ и Fe3+ поддерживаются в водном растворе за счет органической кислоты, не представляющей опасности для человека во время ее использования. Таким образом, предметом изобретения является способ декапирования материалов из стали, особенно из нержавеющей стали, отличающийся тем, что материалы обрабатывают водным раствором, содержащим ионы двухи трехвалентного железа, а также не окисляющую железо органическую кислоту, в количестве, достаточном для поддерживания в растворе ионов Fe2+ и Fe3+, причем ионы двух- и трехвалентного железа находятся в растворе в соотношении Fe2+/Fe3+, равным 10/90-40/60 и тем, что поддерживают соотношение Fe2+/Fe3+ в определенном интервале за счет добавления перекиси водорода.
Кислота, содержащаяся в растворе и вступающая во вторичные реакции во время декапирования, приводит к образованию либо легко рециркулируемой в промышленную среду соли, либо нетоксичной соли, что делает способ более простым и безопасным.
Органической кислотой является предпочтительно соединение, обозначенное общей формулой: R(COOH)n, в которой R обозначает водород, алкильную группу С1-C4, оксиалкильную группу С1-C4 или арильную группу, аралкильную группу или алкиларильную группу С6-C14, в известных случаях замещенную одним или несколькими заместителями, выбираемыми среди C1-C4-алкильных групп и атомов галогена, и n обозначает 1, 2 или 3.
Из предпочтительных органических кислот можно назвать муравьиную, уксусную, пропионовую, бутановую, молочную, бензойную, фталевую и нафтойную кислоту.
Предпочтительно, соотношение Fe2+/Fe3+ составляет величину от 10/90 до 40/60, предпочтительно от 10/90 до 25/75, и еще лучше около 20/80.
Соотношение и, следовательно, кинетика реакции поддерживаются за счет регенерации иона Fe3+ путем добавления перекиси водорода.
Для того, чтобы генерировать перекись водорода в ванне для декапирования, вводят перекись водорода в ванну или добавляют соединение, выбираемое среди надкислоты, соли надкислоты или органической перекиси.
Надкислота предпочтительно выбирается среди надборной, надуксусной, надугольной, надбензойной, надсерной, надфосфорной, надфталевой и иодной кислот.
Соль надкислоты предпочтительно выбирается среди пероксокарбоната натрия и пероксобората магния, а органической перекисью предпочтительно является пероксид мочевины.
Температура осуществления способа предпочтительно составляет 10-90oC.
Предметом изобретения является также декапирующее средство для обработки материалов из стали, особенно, из нержавеющей стали, отличающееся тем, что оно включает с одной стороны раствор, содержащий ионы двух- и трехвалентного железа, причем соотношение Fe2+/Fe3+ составляет 10/90-40/60, а также достаточное для поддержания в растворе ионов Fe2+ и Fe3+ количество не окисляющей железо органической кислоты и, с другой стороны, источник перекиси водорода, предназначенный для добавления в раствор для поддержания соотношения Fe2+/Fe3+ в определенном интервале.
Органическая кислота и источник перекиси водорода такие, как определенные выше.
Декапирующее средство согласно изобретению может транспортироваться без особой упаковки на место его использования, и может быть использовано без особых мер предосторожности везде, включая декапирования закрытых резервуаров, таких, как цистерны, фиксированные или подвижные резервуары, или контейнеры.
Способ согласно изобретению используется для декапирования металлических материалов из стали, особенно, из нержавеющей стали и особенно для удаления окалины, полировки и очистки вышеуказанных материалов, причем обработка может быть реализована в ванне, путем опрыскивания или пульверизации.
Интерес к органическим кислотам вызван тем, что они разлагаются на СO2, H2O и H2, т.е. на такие остатки от разложения, которые безвредны для среды с точки зрения экологии, когда их выбрасывают в атмосферу, в эфлюенты или даже в море.
Другой интерес вызван тем, что органическая среда позволяет образовывать пассивирующую пленку, снижающую коррозию металла.
Кроме того, декапирующий раствор, используемый в изобретении, позволяет избегать повторного осаждения некоторых металлов, таких, как медь, никель, хром, олово, цинк в процессе декапирования благодаря повышенному значению окислительно-восстановительного потенциала раствора.
В промышленном плане, образование иона Fe3+ контролируется путем измерения окислительно-восстановительного потенциала декапирующей ванны. Окислительно-восстановительный потенциал или РЕДОКС представляет собой разницу потенциалов, измеряемую между некорродирующим электродом (например, из платины) и стандартным электродом (например, Hg (HgCl) или насыщенный каломель), причем эти оба электрода погружены в декапирующий раствор. Измеренная величина позволяет с одной стороны характеризовать окисляющую способность декапирующей ванны и с другой стороны регулировать ванну путем введения перекиси водорода или способного давать H2O2 соединения.
В предпочтительном варианте реализации способа изобретения источником перекиси водорода, вводимым в основной декапирующий раствор может быть надкислота, гомологичная кислоте раствора, преимуществом которой является то, что она не изменяет начального состава раствора.
Например, пары: органическая кислота (надкислоты, используемые для осуществления способа, могут быть следующими: уксусная кислота (надуксусная кислота; бензойная кислота (надбензойная кислота; фталевая кислота) надфталевая кислота.
Другим методом поддержания подобного состава основного раствора является использование в качестве источника перекиси водорода органического окислителя, такого, как надугольная кислота H4(CO3)23H2O2 или пероксид мочевины СО(NH2)2 • H2O2, который разлагается на СО2, H2O и N2.
Существенным преимуществом способа, в котором используется раствор органической кислоты, является то, что получают оксид трехвалентного железа (Fe2O3), остаток, используемый в области электротехники для изготовления ферритов.
Преимущества способа также заключаются в том, что окислитель образуется "in situ" без добавления токсических или загрязняющих веществ, и используемые кислые эфлюенты и растворы безвредны для человека. Так, продукт согласно изобретению, включающий кислый раствор и окисляющую его жидкость или твердое вещество, может быть использован в любых средах, даже в закрытой среде.
Способ декапирования, согласно изобретению, следовательно, обладает следующими преимуществами:
он не загрязняет окружающую среду и безопасен во время его использования;
он позволяет использовать кислый раствор без заметной химической модификации во время его осуществления, и
он позволяет рекуперировать и рециркулировать использованные продукты в промышленную среду.
Пример 1
Листовую аустенитную дробленую сталь подвергают травлению способом по изобретению в следующих условиях:
концентрация муравьиной кислоты 25% в/в
концентрация Fe общая 21,8 г/л
концентрация ионов Fe2+ 2,5 г/л
концентрация ионов Fe3+ 19,3 г/л
соотношение Fe2+/Fe3+ 0,12
температура 64 ± 2oС
продолжительность 8 мин.
потенциал Редокс системы (электрод с насыщенной каломелью) 150-300 мВ
Потенциал Редокс поддерживают в заданном интервале путем введения перекиси водорода.
Стальной лист промывают водой при 80oС.
Пример 2
Ферритную листовую сталь подвергают травлению в следующих условиях:
концентрация муравьиной кислоты 18% в/в
концентрация Fe общая 15,3 г/л
концентрация ионов Fe2+ 5,7 г/л
концентрация ионов Fe3+ 9,6 г/л
соотношение Fe2+/Fe3+ 0,59
температура 68 ± 2oC
продолжительность 8 мин.
потенциал Редокс (электрод с насыщенной каломелью) 150-320 мВ
Потенциал Редокс поддерживают в заданном интервале добавлением перекиси водорода.
Сталь промывают водой при 80oС.
Пример 3
Дробленую аустенитную сталь подвергают травлению в следующих условиях:
концентрация уксусной кислоты 25% в/в
концентрация Fe общая 21,8 г/л
концентрация ионов Fe2+ 2,5 г/л
концентрация ионов Fe3+ 19,3 г/л
соотношение Fe2+/Fe3+ 0,12
температура 64 ± 2oC
продолжительность 8 мин.
потенциал Редокс (электрод с насыщенной каломелью) 150-300 мВ
Потенциал Редокс поддерживают в заданном интервале добавлением перуксусной кислоты.
Сталь промывают водой при 80 o С.
Пример 4
Ферритную сталь подвергают травлению в следующих условиях:
концентрация щавелевой кислоты 18% в/в
концентрация Fe общая 15,3 г/л
концентрация ионов Fe2+ 5,7 г/л
концентрация ионов Fe3+ 9,6 г/л
соотношение Fe2+/Fe3+ 0,59
температура 68 ± 2oC
продолжительность 8 мин.
потенциал Редокс (электрод с насыщенной каломелью) 150-320 мВ
Потенциал Редокс поддерживают в определенном интервале добавлением перекиси мочевины.
Сталь промывают водой при 80oС.
Пример 5
Дробленую аустенитную сталь подвергают травлению в следующих условиях:
концентрация молочной кислоты 25% в/в
концентрация Fe общая 21,8 г/л
концентрация ионов Fe2+ 2,5 г/л
концентрация ионов Fe3+ 19,3 г/л
соотношение Fe2+/Fe3+ 0,12
температура 64 ± 2oС
продолжительность 8 мин.
потенциал Редокс (электрод с насыщенной каломелью) 150-300 мВ
Потенциал Редокс поддерживают в определенном интервале добавлением периодной кислоты.
Сталь промывают водой при 80oС.
Пример 6
Ферритную сталь подвергают травлению в следующих условиях:
концентрация лимонной кислоты 18% в/в
концентрация Fe общая 15,3 г/л
концентрация ионов Fe2+ 5,7 г/л
концентрация ионов Fe3+ 9,6 г/л
отношение Fe2+/Fe3+ 0,59
температура 68 ± 2oC
продолжительность 8 мин.
потенциал Редокс (электрод с насыщенной каломелью) 150-320 мВ
Потенциал Редокс поддерживают в определенном интервале добавлением пероксида периодной кислоты.
Сталь промывают водой при 80oС.
Пример 7
Ферритную сталь подвергают травлению в следующих условиях:
концентрация бензойной кислоты 18% в/в
концентрация Fe общая 15,5 г/л
концентрация ионов Fe2+ 5,7 г/л
концентрация ионов Fe3+ г/л
отношение Fe2+/Fe3+ 0,59
температура 68 ± 2oС
продолжительность 8 мин.
потенциал Редокс (электрод с насыщенной каломелью) 150-320 мВ
Потенциал Редокс поддерживается в определенном интервале добавлением пербензойной кислоты.
Сталь промывают водой при 80oС.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДЕКАПИРОВКИ МЕТАЛЛИЧЕСКИХ ПРОДУКТОВ | 1990 |
|
RU2168560C2 |
СПОСОБ ТРАВЛЕНИЯ СТАЛИ | 1996 |
|
RU2110618C1 |
СПОСОБ ТРАВЛЕНИЯ СТАЛИ | 1997 |
|
RU2181150C2 |
СПОСОБ ВЫЩЕЛАЧИВАНИЯ ХАЛЬКОПИРИТА | 1997 |
|
RU2180360C2 |
СПОСОБ ПРОТРАВЛИВАНИЯ НЕРЖАВЕЮЩЕЙ СТАЛИ | 1993 |
|
RU2126460C1 |
ТРАВЛЕНИЕ НЕРЖАВЕЮЩЕЙ СТАЛИ В ОКИСЛИТЕЛЬНОЙ ЭЛЕКТРОЛИТИЧЕСКОЙ ВАННЕ С КИСЛОТОЙ | 2012 |
|
RU2583500C2 |
Способ получения покрытия | 1976 |
|
SU886728A3 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЦЕННЫХ КОМПОНЕНТОВ ИЗ ПРОДУКТИВНЫХ РАСТВОРОВ ПЕРЕРАБОТКИ ЧЕРНОСЛАНЦЕВЫХ РУД | 2011 |
|
RU2493279C2 |
СПОСОБ КОНДИЦИОНИРОВАНИЯ ОТХОДОВ, ВОЗНИКАЮЩИХ ПРИ ВЫВОДЕ ИЗ ЭКСПЛУАТАЦИИ ЯДЕРНОЙ УСТАНОВКИ | 2011 |
|
RU2577329C2 |
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ РАСТВОРОВ, СОДЕРЖАЩИХ СЕРНУЮ КИСЛОТУ | 1999 |
|
RU2149221C1 |
Изобретение относится к области химической обработки металлов, в частности, к растворам и способам травления нержавеющей стали и может быть использовано в металлургической промышленности и других отраслях. Раствор содержит ионы железа (II), ионы железа (III), источник перекиси водорода, не окисляющую железо органическую кислоту для поддержания соотношения ионов железа (II) к ионам железа (III), равного 10/90-40/60. В качестве органической кислоты используют соединение формулы R-(СООН)n, где n = 1-3, R - водород, алкильная или гидроксиалкильная группа с С1-C4, арильная, аралкильная или алкиларильная группа с С6-C14, незамещенная или замещенная С1-C4-алкильной группой или галогеном, например, муравьиную, уксусную, пропионовую, бутановую, молочную, бензойную, фталевую, нафтойную. В качестве источника перекиси водорода используют надкислоту, например, надуксусную, надборную, надбензойную, надсерную, надфосфорную, иодную, надфталевую или кислоту, гомологичную органической кислоте; соль надкислоты, например, пероксикарбонат натрия или пероксиборат магния; органическую перекись, например, перекись мочевины. Способ травления нержавеющей стали включает обработку кислым раствором, содержащим ионы железа (III), ионы железа (III) и источник перекиси водорода, при 10-90oС. 2 с и 7 з.п. ф-лы.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Stainless Jron and Steel (Chapman & Hill, Ltd Лондон, 1951, с.1983,1984 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
МАССА ДЛЯ ИЗГОТОВЛЕНИЯ АБРАЗИВНОГО ИНСТРУМЕНТА С ПОНИЖЕННЫМ СОДЕРЖАНИЕМ КУБИЧЕСКОГО НИТРИДА БОРА | 2015 |
|
RU2587369C1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Устройство для выпрямления многофазного тока | 1923 |
|
SU50A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Способ окисления боковых цепей ароматических углеводородов и их производных в кислоты и альдегиды | 1921 |
|
SU58A1 |
Авторы
Даты
1997-01-27—Публикация
1991-02-07—Подача