Изобретение относится к синтезу карбоновых кислот, более конкретно к электрохимическим способам получения изовалериановой кислоты. Изовалериановая кислота, (CH3)2CHCH2COOH, может быть использована для получения лекарственных препаратов, таких как валидол, корвалол; для изготовления ароматических пищевых эссенций в виде сложных эфиров этой кислоты и спиртов; в органическом синтезе.
Известно достаточно много способов получения карбоновых кислот, в том числе и изовалериановой кислоты (1):
Известны и способы получения карбоновых кислот электрохимическим методом (2), (3).
Спирты окисляют преимущественно на электродах, образующих поверхностные оксиды. Наиболее подходящими оказались никельсодержащие аноды (при использовании в щелочном электролите). Более полно этот процесс описан в работе (4) прототип.
Механизм окисления спиртов на анодах из никеля, покрытых окислами в щелочной среде представлен следующей схемой:
OH- + низший окисел высший окисел + H2O + e;
(органический субстрат) раствор (органический субстрат)адс
высший окисел + (органический субстрат)адс -L низший окисел + промежуточный радикал (скорость-определяющая стадия);
промежуточный радикал (n 1)e -L продукт
промежуточный радикал (n 1) высший окисел -L (n 1) низший окисел + продукт, где n число электронов, принимающих участие в реакции.
По такой схеме получают диацетон-2кето-L-гулоновой кислоты, другие карбоновые кислоты, в том числе и изовалериановую кислоту окислением изоамилового спирта с выходом 80
К недостаткам данного способа можно отнести низкую активность окисно-никелевых электродов и качество полученной изовалериановой кислоты.
Перед нами стояла задача оптимизировать процесс окисления, повысить активность электродов и качество продукта.
Сущность предлагаемого решения заключается в том, что в известном способе получения изовалериановой кислоты, включающем окисление изоамилового спирта высшими окислами никеля в условиях их электрохимической регенерации на никельсодержащих электродах в щелочной среде, процесс ведут на переменном токе частотой 1 0,0001 Гц, дозировку щелочи и изоамилового спирта ведут по мере переработки, поддерживая концентрацию щелочи 1 6 контроль процесса при этом осуществляют по величине напряжения на электродах, процесс окисления ведут при 20 80oC, плотности тока 0,05 0,1 А/см2 и концентрации никеля в пересчете на сульфат никеля 5 10 г/л, после окончания реакции реакционную массу подкисляют до рН 2,5 3,0 и выделяют изовалериановую кислоту, причем, технический результат получается более высокий, когда перед подкислением реакционной массы, отгоняют с паром непрореагировавший спирт и побочные продукты.
Все признаки существенные, так как каждый из них необходим, а все вместе они достаточны для получения технического результата.
Механизм реакции окисления изоамилового спирта в щелочной среде, в присутствии солей никеля до изовалериановой кислоты происходит по следующей схеме:
Реакцию проводят на переменном токе частотой 1 0,0001 Гц и плотности тока 0,05 0,1 А/см2, что способствует наиболее оптимальному окислению изоамилового спирта до изовалериановой кислоты. С повышением плотности тока доля тока на выделение кислорода увеличивается, а время электролиза уменьшается, что не очень благоприятно для взаимодействия спирта с высшими окислами, а снижение плотности тока снижает производительность оборудования.
Дозировку щелочи ведут по мере переработки изоамилового спирта, поддерживая ее концентрацию 1 6 как только напряжение на электродах увеличивается на 0,2 В дозируют раствор щелочи, так как скорость процесса существенно зависит от концентрации щелочи, при снижении концентрации снижается существенно выход изовалериановой кислоты, а при увеличении ее концентрации потенциал окисления высшего окисла никеля становится выше потенциала выделяемого кислорода и при этом начинается электролиз воды, на поверхности анода образуется слой пузырей, который препятствует окислению Ni(OH)2 до NiOOH, а именно высший окисел никеля окисляет изоамиловый спирт в изовалериановую кислоту. Для этого процесса необходима и достаточна концентрация никеля в пересчете на сульфат никеля 5 10г/л. Температуру поддерживают 20 80oC, при температуре ниже 20oC окисление идет очень медленно, а использование температуры выше 80oC поведет к образованию побочных продуктов и потерям спирта за счет испарения.
После окончания реакции окисления необходимо удалить непрореагировавший спирт и небольшое количество побочных продуктов. Если подкислять до рН 2,5 - 3,0 до отделения спирта, то при дальнейшей перегонке возможно образование изоамилового эфира изовалериановой кислоты, что снизить качество изовалериановой кислоты.
Способ осуществляют следующим образом:
В лабораторный электролизер с плоскопараллельными электродами общей площадью 100 см2 из стали 12Х18Н10Т, содержащей никель, емкостью 350 см3, заливают 240 см3 раствора щелочи, включают механическую мешалку, нагревают с помощью термостата и подают напряжение на электроды, когда температура повысится до определенного значения вводят раствор NiSO4, далее вводят порциями изоамиловый спирт (0,4 моль), подсоединяют обратный холодильник и с помощью реостата устанавливают ток и записывают напряжение на вольтметре. При увеличении напряжения на 0,2 В добавляют щелочь и спирт. После завершения окисления, установку выключают. Из реакционной массы отгоняют с водяным паром примеси, затем подкисляют реакционную массу до рН 2,5 3,0, выделившийся органический слой, изовалериановую кислоту, перегоняют фракцию с температурой кипения 174 176oC.
Из водных слоев выделяют еще изовалериановую кислоту (около 4), объединяют обе части, определяют выход и качество изовалериановой кислоты (ГОСТ 18995.1-73 и ГОСТ 7026-86).
Экспериментальные данные приведены в таблице.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ИЗОВАЛЕРИАНОВОЙ КИСЛОТЫ | 1992 |
|
RU2024487C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДНОГО РАСТВОРА НИТРАТА НИКЕЛЯ | 1993 |
|
RU2100278C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ И РАДИОАКТИВНЫХ МЕТАЛЛОВ ИЗ ОКИСЛЕННОГО ТЕХНОЛОГИЧЕСКИ УПОРНОГО СЫРЬЯ | 2000 |
|
RU2170775C1 |
Способ получения изовалериановой кислоты | 1980 |
|
SU891629A1 |
Способ выделения насыщенных алифатических кислот с @ -с @ | 1980 |
|
SU929625A1 |
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИЛСОДЕРЖАЩИХ ПРОСТЫХ ПОЛИЭФИРОВ ДЛЯ ЖЕСТКИХ ПЕНОПОЛИУРЕТАНОВ | 1994 |
|
RU2081127C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА ЩЕЛОЧНОГО АККУМУЛЯТОРА | 1990 |
|
RU1695788C |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛОЖИТЕЛЬНОГО ЭЛЕКТРОДА ЩЕЛОЧНОГО ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА | 1992 |
|
RU2022414C1 |
СПОСОБ ПОЛУЧЕНИЯ 2,3,5-ТРИМЕТИЛГИДРОХИНОНА | 1994 |
|
RU2126785C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НЕПОЛЯРИЗУЕМОГО ЭЛЕКТРОДА ЭЛЕКТРОХИМИЧЕСКОГО КОНДЕНСАТОРА | 2023 |
|
RU2823037C1 |
Использование: для получения лекарственных препаратов и изготовления пищевых добавок. Сущность изобретения: продукт - изовалериановая кислота. n
Способ получения изовалериановой кислоты окислением изоамилового спирта высшими окислами никеля в условиях их электрохимической регенерации на никельсодержащих электродах в щелочной среде, отличающийся тем, что процесс ведут на переменном токе частотой 1 0,0001 Гц, дозировку щелочи и изоаммилового спирта ведут по мере переработки, поддерживая концентрацию щелочи 1 6% контроль процесса при этом осуществляют по величине напряжения на электродах, процесс окисления ведут при температуре 20 80oС, плотности тока 0,05 0,1 А/см2 и концентрации никеля в пересчете на сульфат никеля 5 10 г/л, после окончания реакции из реакционной массы отгоняют с паром непрореагировавший спирт и побочные продукты, массу подкисляют до pH 2,5 3,0 и выделяют изовалериановую кислоту.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Терней А | |||
Современная органическая химия.- М.: Мир, 1981, т.2, с | |||
Прибор, автоматически записывающий пройденный путь | 1920 |
|
SU110A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Органическая электрохимия/ Пер | |||
с анг | |||
/ Под ред | |||
д.х.н | |||
Петросяна В.А. | |||
д.х.н | |||
Феоктистова Л.Г.- М.: Химия, 1988, кн | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Мусоросжигательная печь | 1923 |
|
SU495A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Способ получения диацетон -2-кето -гулоновой кислоты | 1976 |
|
SU701996A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Фиошин М.Я | |||
Авруцкая И.А | |||
Электрохимия органических соединений на анодах из окислов некоторых переходных металлов.- Ж-л АН СССР "Успехи химии", т.XIV, вып | |||
Походная разборная печь для варки пищи и печения хлеба | 1920 |
|
SU11A1 |
Анодная батарея | 1924 |
|
SU2067A1 |
Авторы
Даты
1997-02-27—Публикация
1994-06-08—Подача