Изобретение относится к технологии получения синтетических каучуков, в частности к производству изопренового каучука, и может быть использовано в нефтехимической промышленности.
Известен способ стабилизации каучуков, например полиизопрена, получаемого полимеризацией изопрена в среде углеводородного растворителя в присутствии катализатора, заключающийся в том, что после предварительного разрушения катализатора метанолом и отмывки полиизопрена от продуктов разложения катализатора в раствор полимера вводят антиоксиданты в виде водной суспензии, затем раствор перемешивают, усредняют и направляют на выделение и сушку каучука (П. А. Кирпичников и др. Химия и технология синтетического каучука. Л. Химия, 1975, с. 258 261).
Недостатками указанного способа являются неоднородность распределения антиоксидантов в полимере, потери при транспортировке суспензии, необходимость применения поверхностно-активных веществ для стабилизации суспензии.
Наиболее близким к заявляемому изобретению по технической сущности является способ стабилизации изопренового или бутадиенового каучука, заключающийся во введении в изопентановый или толульный раствор каучука при температуре 18 25oC толуольного раствора 2,6-дитрет-бутил-4-метилфенола или смеси N-фенил-β-нафтиламина с N,N'-дифенил-п-фенилендиамином в качестве антиоксидантов (Синтетический каучук. Под ред. И.В. Гармонова. Л. Химия, 1976, с. 219).
Данный способ обладает следующими недостатками:
неудовлетворительное смешение высоковязкого раствора полиизопрена при низкой температуре (18 25oC) c раствором антиоксидантов приводит к неравномерному распределению последних в полимере, снижает эффективность стабилизации;
дозировка толуола растворителя антиоксидантов велика, что способствует увеличению потерь толуола и расхода пара на дегазацию каучука и регенерацию растворителя.
Целью изобретения является уменьшение потерь антиаксидантов, исключение забивок трубопроводов шламом и повышение точности дозирования антиоксидантов.
Это достигается тем, что в известном способе стабилизации изопренового каучука путем введения в углеводородный раствор полиизопрена антиоксидантов фенольного и/или аминного типа, например 2,6-ди-трет-бутил-4-метилфенола, N-фенил-b-нафтиламина или N,N'-дифенил-п-фенилендиамина в углеводородном растворителе, дополнительно вводят в раствор антиоксидантов стеариновую кислоту в количестве от 1,5 до 15,0% от массы антиоксидантов и осуществляют стабилизацию при температуре 45 65oC.
Предлагаемый способ стабилизации синтетических каучуков осуществляют по принципиальной схеме, изображенной на чертеже.
Раствор антиоксидантов приготавливают, например, периодическим методом, в емкости 1, снабженной мешалкой и рубашкой для глухого обогрева водяным паром. В емкость 1 заливают по линии 2 расчетное количество модуля. Расчетное количество порошкообразного или гранулированного антиоксиданта, например, 2,6-ди-трет-бутил-4-метилфенола или N-фенил-b-нафтиламина, N,N'-дифенил-п-фенилендиамина, загружают по линии 3, а затем растворяют при 20 80oC при непрерывном перемешивании. Температуру в емкости 1 выдерживают изменением расхода пара, подаваемого в рубашку по линии 4. Паровой конденсат выводят из рубашки по линии 5.
При необходимости в емкость 1 могут заливать расчетное количество расплава антиоксидантов. Стеариновую кислоту загружают в емкость 1 по линии 6 в количестве от 1,5 до 15,0% от массы антиоксидантов. В отличие от известного способа стабилизации предлагаемый способ позволяет за счет введения стеариновой кислоты стабилизировать раствор антиоксидантов в толуоле, исключив выпадение из раствора плохорастворимых и труднорасплавляемых веществ, содержащихся в порошкообразном или гранулированном антиоксиданте, или являющихся антиоксидантом с наиболее высокой температурой плавления.
Благодаря этому отпадает необходимость в чистке емкости 1 от шлама, уменьшаются потери антиоксидантов со шламом, исключаются забивки трубопроводов и диафрагм шламом, повышается точность дозирования, что способствует увеличению эффективности стабилизации.
Полученный в емкости 1 раствор стабилизатора направляют по линии 7 на всас дозировочного насоса 8 и далее по линии 9 в смеситель 10 для смешения с раствором полимера, подаваемым по линии 11.
Стабилизацию полимера в процессе смешения раствора полимера с раствором антиоксидантов проводят при температуре от 45 до 65oC. В отличие от известного способа осуществление стабилизации при таких температурах позволяет существенно снизить вязкость раствора полимера и повысить эффективность перемешивания материальных потоков, а, следовательно, и качество стабилизации. Повышение температуры более 65oC, хотя и может способствовать интенсификации процессов смешения и стабилизации, потребует увеличения давления в системе, в противном случае образование парожидкостной смеси ухудшает контакт полимера с антиоксидантом, снизит эффективность стабилизации и приведет к повышению удельного расхода антиоксиданта.
Раствор полимера заправляют стабилизатором в основном после стопперирования реакции полимеризации, например, метанолом и отмывки от продуктов разложения катализатора и стоппера-метанола. В некоторых случаях стоппелирование процесса полимеризации мономера проводят cамим раствором антиоксидантов, в смеси со стоппером (тогда раствор антиоксидантов вводят до отмывки полимера) или водным раствором щелочи.
Отмытый и заправленный антиоксидантом раствор полимера по линии 12 выводят на выделение каучука.
Заявляемый способ иллюстрируют следующими примерами.
Пример 1 (контрольный)
Производство изопренового каучука СКИ-3
Стабилизацию изопрена осуществляют по способу, приведенному в прототипе. При этом дезактивацию катализатора проводят одновременно со стабилизацией полимера. Растворителем антиоксидантов является толуол-метанольная смесь с объемным соотношением метанол: толуол, равным 50:50. В качестве антиоксидантов используют ДФФД и нафтам-2, дозировку ДФФД выдерживают 0,3 мас. нафтама-2 0,8 мас. при 20oC.
Растворимость антиоксидантов при 20oC в метанольно-толуольной смеси, мас.
ДФФД 5,0
нафтам-2 15,9
Cодержание шлама в растворе (после растворения антиоксидантов) 1,1% от массы смеси.
Содержание антиоксидантов в готовом каучуке, мас. см. в табл.1.
C учетом регенерации расход толуола 35 кг/т каучука, расход метанола - 15 кг/т каучука.
Расход ДФФД составил 2,95 кг/т каучука, расход нафтама-2 7,82 кг/т каучука. Потери антиоксидантов в процессе стабилизации, отмывки и дегазации: ДФФД 10% нафтама-2 15% Индекс сохранения пластичности полимера 97%
Примеры 2 6. Стабилизацию осуществляют по предлагаемому cпособу. Растворяют антиоксиданты в метанол-толуольном растворе. Объемное соотношение метанол: толуол рано 50:50. Растворение проводят при 20oC и дополнительно вводят в раствор антиоксидантов стеариновую кислоту в количестве от 0,5 до 20% от массы антиоксидантов.
В качестве антиоксидантов используют ДФФД и нафтам-2, вводимые в количестве: ДФФД 0,3% от массы полимера, нафтама-2 0,8% от массы полимера.
Растворимость антиоксидантов в смеси, мас.
ДФФД 5,1
нафтам-2 16,0
Содержание антиоксидантов в готовом каучуке и шлама в растворе антиоксидантов см. в табл.2.
Потери антиоксидантов в процессе отмывки,стабилизации и дегазации составили, мас.
ДФФД 5-7%
нафтам-2 8-10%
Расход толуола составил с учетом регенерации 34,3 кг/т каучука, расход метанола 13,5 кг/т каучука. Индекс сохранения пластичности полимера составил 98,5%
Пpимеpы 7-8.
Cтабилизацию проводят по предлагаемому и известному способам. Дозировка ДФФД в обоих случаях 0,21 от массы полимера, нафтама-2 0,55% от массы полимера. В качестве растворителя антиоксидантов использовали: в предлагаемом способе толуол, содержащий 8% стеариновой кислоты, в известном способе - метанол-толуольный раствор в объемном соотношении 50:50. Концентрация антиоксидантов как в растворе толуола, так и в растворе метанол-толуольном составила, мас.
ДФФД 4,5
нафтама-2 11,5
Отобрали две порции недезактивированного раствора полимера в изопентане по 3 л каждая с содержанием сухого остатка 12,5 мас. В первую порцию ввели 129 мл раствора антиоксидантов в толуоле (содержащем стеариновую кислоту), а во вторую порцию раствора полимера ввели 135,7 мл метанол-толуольного раствора антиоксидантов. Перемешивание осуществляли в течение 45 мин в обоих случаях в аппарате с частотой вращения мешалки 1500 об/мин. Раствор полимера затем дегазировали водным методом в присутствии антиагломерата стеарата кальция (9 кг/т каучука), каучук высушивали при 150oC в течение 2 ч. затем определили индекс сохранения пластичности полимера, содержание антиоксидантов в каучуке, их потери с водой, вязкость каучука по Муни, пластичность по Карреру и прочность каучука на разрыв.(табл.3).
Примеры 9 10.
В промышленных условиях проводят стабилизацию полиизопрена, полученного полимеризацией изопрена на катализаторе Циглера-Натта в растворе изопентана как по предлагаемому, так и по известному способам. Содержание полимера в растворе 12,9 мас. Дозировка антиоксидантов в обоих случаях, в от массы полимера:
ДФФД 0,23
нафтам-2 0,55
Концентрация в растворе: ДФФД 4,5 мас. нафтама-2-11,5 мас.
Длительность цикла испытания каждого из способов стабилизации составила 2 мес.(табл.4,5).
Как видно из примеров, стабилизация полиизопрена по предлагаемому способу позволяет снизить потери антиоксадантов на 3-7% исключить забивки оборудования шламом, снизить или полностью исключить расход метанола, повысить эффективность стабилизации каучука.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СТАБИЛИЗАЦИИ ПОЛИМЕРОВ | 1999 |
|
RU2161631C1 |
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ | 2008 |
|
RU2372357C1 |
СПОСОБ СТАБИЛИЗАЦИИ ПОЛИИЗОПРЕНОВОГО КАУЧУКА | 2000 |
|
RU2177961C2 |
СПОСОБ ПОЛУЧЕНИЯ БУТАДИЕН-СТИРОЛЬНОГО КАУЧУКА | 1994 |
|
RU2082723C1 |
СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА | 2004 |
|
RU2270839C1 |
СПОСОБ ПОЛУЧЕНИЯ НОРМАЛЬНОГО БУТИЛЛИТИЯ | 1994 |
|
RU2095362C1 |
Способ получения модифицированного цис-1,4-полиизопрена | 1977 |
|
SU675871A1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНОВОГО КАУЧУКА | 1992 |
|
RU2071964C1 |
СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА | 1994 |
|
RU2096423C1 |
СПОСОБ ПОЛИМЕРИЗАЦИИ ИЗОПРЕНА | 1994 |
|
RU2092497C1 |
Изобретение относится к технологии получения синтетических каучуков, в частности к производству изопренового каучука, и может быть использовано в нефтехимической промышленности. Целью изобретения является уменьшение потеpь антиоксидантов, исключение забивок трубопроводов шламом и повышение точности дозирования антиоксидантов. Это достигается тем, что в известном способе стабилизации изопренового каучука путем введения в углеводородный раствор полиизопрена антиоксидантов фенольного и/или аминного типа, например, 2,6-ди-трет-бутил-4-метил-фенола, N-фенил-β-нафтиламина или N,N'-дифенил-n-фенилендиамина в углеводородном растворителе, дополнительно вводят в раствор антиоксидантов стеариновую кислоту в количестве от 1,5 до 15,0% от массы антиоксидантов и осуществляют стабилизацию при температуре 45 - 65oC. 1 ил., 5 табл.
Способ стабилизации изопренового каучука путем введения в углеводородный раствор полиизопрена антиоксидантов фенольного и/или аминного типа, например 2,6-ди-трет-бутил-4-метилфенола, N-фенил-β-нафтиламина, N,N1-дифенил-п-фенилендиамина, в углеводородном растворителе, отличающийся тем, что дополнительно вводят в раствор антиоксидантов стеариновую кислоту в количестве от 1,5 до 15% от массы антиоксидантов и осуществляют стабилизацию при 45 65oС.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Кирпичников П.А | |||
и др | |||
Химия и технология синтетического каучука | |||
- Л.: Химия, 1975, с | |||
Ведущий наконечник для обсадной трубы, употребляемой при изготовлении бетонных свай в грунте | 1916 |
|
SU258A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Синтетический каучук | |||
/ Под ред | |||
И.В.Гармонова | |||
- Л.: Химия, 1976, с | |||
Прибор для записи звуковых волн | 1920 |
|
SU219A1 |
Авторы
Даты
1997-04-10—Публикация
1995-03-13—Подача