СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТЕЙ ИЗДЕЛИЙ МАЛОЙ ЖЕСТКОСТИ Российский патент 1997 года по МПК B23P9/02 B24B39/00 

Описание патента на изобретение RU2085355C1

Изобретение относится к технологическим процессам повышения эксплуатационных свойств деталей путем поверхностной деформации.

Известны способы поверхностного пластического деформирования (ППД) путем обработки дробью, центробежной обработки [1] применяемые для повышения эксплуатационных свойств изделий.

Однако рекомендуемые режимы обработки ориентированы на обеспечение эффекта упрочнения и минимальной шероховатости за счет многократного перекрытия следов пластической деформации от инструмента, что существенно снижает производительность обработки.

Известен способ обработки контактных поверхностей сопрягаемых стальных деталей малой жесткости с образованием на обрабатываемых поверхностях наклепом рифлений [2]
Рифления представляют совокупность дискретных непересекающихся следов от воздействия обрабатывающего инструмента.

Недостатком способа является ограниченная область его применения.

Согласно описываемому способу для высокопроизводительного повышения прочностных характеристик изделий малой жесткости поверхностным пластическим деформированием макрорельеф формируют в виде совокупности дискретных непересекающихся следов. Следам придают круглую или эллиптическую форму, располагают вплотную друг к другу и выполняют с соотношением глубины следа к толщине стенки в пределах 0,05 0,1 и отношением глубины отпечатка к его приведенному радиусу кривизны, равным 0,35.0,4.

Причинно-следственная связь:
1. следам придают круглую или эллиптическую форму, располагают вплотную друг к другу. Данный признак обеспечивает наибольшее увеличение площади поверхности в зависимости от вида макрорельефа при прочих равных условиях, т.е. рельеф из отдельных непересекающихся лунок обеспечит большее увеличение площади, чем рельеф в виде параллельных рифлений, винтовых и т.п.

2. следы выполняют с отношением глубины следа к толщине стенки изделия в пределах 0,05.0,1.

Данный признак не допускает ослабления площади поперечного сечения тонкостенных изделий вследствие присутствия после обработки остаточной деформации.

3. следы выполняют с отношением глубины отпечатка к его приведенному радиусу кривизны, равным 0,35.0,4.

Данный признак отражает условие формирования лунок, при котором в наибольшей степени проявляется эффект повышения прочностных характеристик изделий.

На фиг. 1 показан образец для прочностных испытаний; на фиг. 2 - зависимость предела прочности σв от отношения площади поверхностей образца к объему S/V.

Общеизвестно влияние масштабного фактора на прочность деталей и образцов, состоящее в том, что более крупные детали и образцы показывают при испытаниях меньшую прочность, чем малые детали и образцы аналогичной геометрической формы. Достаточно точно масштабный фактор может быть учтен и описан в виде зависимости прочности σвт) от отношения площади поверхности к объему S/V. В этом случае для одного и того же вида образца (детали) и материала результаты испытаний на прочность различных по размерам образцов располагаются на одной линии в системе координат σв S/V. В подтверждение оказанному ниже представлены результаты испытаний на растяжение образцов различной толщины из Ст. 3.

Изменение отношения S/V достигается двумя вариантами. Первый вариант заключается в варьировании при испытаниях толщины образцов при их неизменной ширине (30 мм) и длине рабочей части (60 мм) (фиг. 1). В этом случае увеличение площади наружных поверхностей перекрывалось существенным возрастанием объема образцов, т.е. различные отношения S/V обуславливались главным образом изменением объема. Испытаниям подвергались образцы толщиной 1,5; 2,0; 4,0; 6,0; 10 мм. Этим значениям соответствовали отношения S/V, равные 1,50; 1,07; 0,57; 0,40 и 0,27 1/мм.

Во втором варианте изменения S/V достигалось за счет увеличения площади наружных поверхностей образцов путем создания макрорельефа обработки дробью по условиям описываемого способа, при этом обрабатывались образцы тех же толщин, что указывались выше. Для них отношения S/V составляли: 1,78; 1,27; 0,68; 0,47 и 0,31 1/мм.

Все образцы, изготовленные по первому и второму вариантам перед испытаниями подвергались отжигу для снятия наклепа после обработки дробью и обеспечения идентичности структуры.

Результаты проведенных испытаний на растяжение представлены на фиг. 2, где точками обозначены результаты испытаний гладких образцов, крестиками с макрорельефом на поверхностях. Результаты показывают зависимость предела прочности σв от отношения S/V, изменявшегося различными вариантами, и подтверждают возможность повышения прочности свойств путем технологического увеличения площади поверхностей за счет создания макрорельефа.

Реализация способа обработки осуществляется следующим образом.

Первоначально, исходя из толщины образца δ (стенки детали), определяется допустимая глубина следа деформируемого инструмента (рабочего тела).

h/δ = 0,05...0,1 h = (0,05...0,1)δ.
В применении к рассмотренным выше образцам, имевшим толщину 1,5; 2,0; 4,0; 6,0 и 10 мм; значения h соответственно составляли: 0,1; 0,1; 0,2; 0,4 и 0,8 мм.

Затем из условия формирования требуемых лунок рассчитывается радиус кривизны инструмента (рабочего тела):
h/ρ = 0,35...0,4 ρ = h/0,35...0,4
В рассматриваемом случае значения радиусов равнялись 0,25; 0,25; 0,5; 1,0; 2,0 мм.

В заключении экспериментально определяются параметры обработки, обеспечивающие требуемую глубину отпечатка "h", и время обработки, при котором на поверхности образуются дискретные и непересекающиеся следы рабочих тел, расположенные вплотную друг к другу.

Согласно описанному выше обработка производилась на дробеметной установке и получение требуемой глубины отпечатка обеспечивалось изменением кинетической энергии дроби за счет варьирования частоты вращения ротора установки. В описанных выше условиях обработки она составляла 1600, 2100, 2700, 3500 об/мин. Время экспозиции обработки во всех случаях составляло 20 с.

В таблице приведены результаты сравнительных испытаний на растяжение образцов, обработанных по условиям заявленного способа и отличным от них.

Из таблицы видно, что наибольшее значение предела прочности показали образцы, обработанные дробью в режиме упрочнения и в режиме обеспечения макрорельефа по условиям описываемого способа. Это обстоятельство объясняется эффектом упрочнения, обусловленным соответствующими структурными изменениями, проходящими при обработке. Причем несколько большая величина σв характерна для образцов, обработанных по условиям описываемого способа, хотя эффект наклепа в них меньший, чем в образцах, обработанных в режиме упрочнения. Это объясняется влиянием дополнительного фактора большей площадью поверхностей, т.е. большей величиной отношения S/V.

Наглядным подтверждением являются результаты испытаний образцов, обработанных по тем же вариантам, но прошедших отжиг, обеспечивающий идентичность структурного состояния материала. В этом случае большее значение σв 460 МПа по сравнению с образцами, имеющими σв 380 МПа, может быть объяснено только увеличением площади поверхностей за счет формирования оптимального микрорельефа. Испытания перечисленных образцов показали, что обработка поверхностей по описываемому способу позволяет в 6 раз быстрее достигнуть повышенной прочности в сравнении с традиционной упрочняющей обработкой дробью τ1 2 мин 120 с; τ2 20 с).

Три других варианта обработки 5, 6, 7, представленные в таблице, свидетельствуют о влиянии отклонения режимов обработки от условий, обусловленных описываемым способом обработки. В частности образцы 5-го варианта показали минимальную прочность вследствие ослабления площади поперечного сечения за счет пластической деформации. В образцах 6-го варианта имело место меньшее увеличение площади поверхностей, чем это было возможно. В последнем виде образцов, характеризовавшемся завышенным значением h/ρ 0,5, несмотря на наибольшую из всех образцов величину отношения S/V 1,3, не была получена максимальная прочность. Это, вероятно, объясняется влиянием впадин такого рельефа ( h/ρ 0,5) на концентрацию напряжений.

Положительный результат от использования описанного способа заключается в повышении прочностных характеристик изделий, снижении материалоемкости, повышении качества и надежности.

Похожие патенты RU2085355C1

название год авторы номер документа
СПОСОБ УПРОЧНЕНИЯ СТАЛЬНЫХ ПЛАСТИН 1998
  • Матлин М.М.
  • Лебский С.Л.
RU2156683C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ СТЕПЕНИ УПРУГОПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ МАТЕРИАЛА 2009
  • Матлин Михаил Маркович
  • Лебский Сергей Львович
  • Мозгунова Анна Ивановна
  • Фролова Александра Ивановна
RU2386116C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА КОНТАКТНОЙ ВЫНОСЛИВОСТИ МАТЕРИАЛА 1996
  • Матлин М.М.
RU2123175C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ МАТЕРИАЛА ПРИ РАСТЯЖЕНИИ-СЖАТИИ 2015
  • Матлин Михаил Маркович
  • Мозгунова Анна Ивановна
  • Казанкина Елена Николаевна
  • Казанкин Владимир Андреевич
  • Манукян Дмитрий Сергеевич
RU2599069C1
СПОСОБ УПРОЧНЕНИЯ МЕТАЛЛИЧЕСКИХ ЗАГОТОВОК 1994
  • Козий С.И.
  • Хромов А.И.
  • Козий Т.Б.
  • Павленко Ю.И.
RU2092608C1
СПОСОБ КОМБИНИРОВАННОГО УПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ 2001
  • Паршев С.Н.
  • Полозенко Н.Ю.
RU2203173C2
СПОСОБ ПОВЫШЕНИЯ ЦИКЛИЧЕСКОЙ ПРОЧНОСТИ ДЕТАЛЕЙ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ 1996
  • Кравченко Б.А.
RU2143011C1
СПОСОБ ОБРАБОТКИ ДЕТАЛЕЙ ПОВЕРХНОСТНЫМ ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ 2000
  • Дудкина Н.Г.
  • Федоров А.В.
  • Свитачев С.Ю.
RU2168552C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ УПРОЧНЕННОГО НАКЛЕПОМ ПОВЕРХНОСТНОГО СЛОЯ 2001
  • Матлин М.М.
  • Лебский С.Л.
  • Фролова А.И.
RU2194263C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ ЭКЗОТЕРМИЧЕСКИХ ПОРОШКОВЫХ СМЕСЕЙ 1995
  • Амосов А.П.
  • Федотов А.Ф.
RU2102187C1

Иллюстрации к изобретению RU 2 085 355 C1

Реферат патента 1997 года СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТЕЙ ИЗДЕЛИЙ МАЛОЙ ЖЕСТКОСТИ

Использование: обработка деталей поверхностной пластической деформации с целью повышения прочностных характеристик изделий. Сущность изобретения: поверхность обрабатывают поверхностным пластическим деформированием с образованием макрорельефа. Макрорельеф формируют в виде совокупности дискретных, непересекающихся следов от воздействия обрабатывающего инструмента. Следам придают круглую или эллиптическую форму, располагают вплотную друг к другу и выполняют с соотношением глубины следа к толщине стенки в пределах 0,05... 0,1 и отношением глубины отпечатка к его приведенному радиусу кривизны, равным 0,35 ... 0,4. 2 ил., 1 табл.

Формула изобретения RU 2 085 355 C1

Способ обработки поверхностей изделий малой жесткости поверхностным пластическим деформированием, заключающийся в воздействии инструмента на поверхность с образованием макрорельефа, представляющего совокупность дискретных и непересекающихся следов воздействия обрабатывающего инструмента, отличающийся тем, что следам придают круглую или эллиптическую форму, располагают вплотную друг к другу и выполняют с отношением глубины следа к толщине стенки в пределах 0,05 0,1 и отношением глубины отпечатка к его приведенному радиусу кривизны 0,35 0,4.

Документы, цитированные в отчете о поиске Патент 1997 года RU2085355C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Одинцов Л.Г
Упрочнение и отделка деталей поверхностным пластическим деформированием
Справочник.- М.: Машиностроение, 1987, с.328
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ обработки контактирующихся поверхностей сопрягаемых стальных деталей 1955
  • Кудрявцев И.В.
  • Лопатинский Н.А.
SU103959A1

RU 2 085 355 C1

Авторы

Пронин А.М.

Даты

1997-07-27Публикация

1993-08-26Подача