СПОСОБ ПРОИЗВОДСТВА АГЛОМЕРАТА С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ ОСТАТОЧНОГО УГЛЕРОДА Российский патент 1997 года по МПК C22B1/16 

Описание патента на изобретение RU2086674C1

Изобретение относится к металлургии, в частности к области подготовки руд к плавке методом агломерации, и может быть применено на агломерационных фабриках цветной металлургии, например, при агломерации окисленной никелевой руды.

Известен способ производства агломерата с заданным количеством остаточного углерода (1), включающий разделение топлива по его реакционной способности, ввод в шихту топлива с высокой реакционной способностью в количестве, необходимом для спекания, предварительную обработку топлива с низкой реакционной способностью водной суспензией вяжущего вещества с водородным показателем pH 11-13.

Известен также способ получения марганцевого агломерата с остаточным углеродом (2), включающий введение твердого топлива в шихту в количестве, превышающем необходимое для спекания, его предварительную обработку, смешивание и спекание шихты на агломерационной машине, причем на топливо крупностью 6-8 мм, которое вводят сверх необходимого для спекания, предварительно накатывают оболочку из тонкодисперсного карбонатного марганцевого концентрата, обеспечивая ее пористость.

Недостатками названных способов являются необходимость разделения топлива по реакционной способности, введение топлива в шихту сверх необходимого для спекания, что обусловливает неэффективное использование топлива за счет дополнительных потерь с отходящими газами, в том числе в виде оксида углерода, дополнительная обработка топлива, введенного сверх необходимого для спекания, сложность исполнения, необходимость установки дополнительного оборудования, трудность контроля и регулирования заданных параметров обработки топлива.

Наиболее близким по технической сущности и достигаемому результату является способ агломерации окисленной никелевой руды, включающий дробление руды до крупности 35 мм, измельчение твердого топлива (коксовой мелочи) до крупности 5 мм с содержанием фракции +5 мм не более 5% смешивание составляющих шихты (руды, коксина, возврата) и спекание на ленточных агломерационных машинах при расходе коксина, не превышающем необходимое для спекания. Содержание остаточного углерода в агломерате в этих условиях составляет 1,8% (3).

Этот способ не обеспечивает получение агломерата с более высоким содержанием углерода, что не позволяет заметно экономить кокс при шахтной плавке. Крупность коксина, применяемого при спекании 5 мм, не превышает снижения потерь топлива с отходящими газами в виде оксида углерода.

Технической задачей изобретения является увеличение содержания остаточного углерода в агломерате и экономия за счет этого кокса при шахтной плавке, без повышения расхода топлива на агломерацию и усложнения способа подготовки топлива к спеканию.

Технический результат достигается за счет использования топлива для агломерации, верхний предел которого определяется исходя из фракционного состава рудной части шихты по соотношению:
dт 0,3dp,
где dт -верхний предел крупности топлива, мм;
dp верхний предел крупности руды, мм;
причем содержание фракции, соответствующей верхнему пределу крупности топлива, составляет не более 10 мас. топлива.

Горение топлива в слое агломерационной шихты, как правило, начинается с мелких частиц топлива в силу их большой реакционной способности. По мере выгорания мелких частиц топлива концентрация углерода в слое в весовых и объемных единицах снижается, а оставшиеся более крупные частицы топлива оказываются разобщенными рудной спекшейся частью шихты. Наконец, наступает такой момент, когда тепла от горения разобщенных шихтой крупных частиц становится недостаточно для поддержания высокой температуры в слое, интенсивно охлаждаемом воздухом, и горение прекращается. Частицы несгоревшего топлива остаются запеченными в агломерате. Часть их при разрушении спека переходит с возвратом снова в шихту, а другая часть в виде остаточного углерода в агломерате поступает в плавку в шахтные печи, заменяя частично крупнокусковый металлургический кокс.

Состав отходящих газов свидетельствует о том, что часть топлива при агломерации недожигается, несмотря на избыточное количество кислорода воздуха. Соотношение количеств Co и CO2 составляет 0,23. Авторами была исследована зависимость между содержанием CO в отводящих газах и крупностью используемого топлива. Выяснилось, что при содержании в топливе фракции +5 мм в количестве до 5% концентрация CO в отходящих газах составляет 1,15% а при содержании в топливе фракции +10 мм до 5-7% концентраци CO в отходящих газах снизилась и составила 0,77%
По расчету для агломашин площадью 75 м2 снижение оксида углерода в отходящих газах на 0,1% соответствует уменьшению потерь углерода за счет неполноты горения на 2,1 2,2 кг на 1т агломерата. При этом количество остаточного углерода в агломерате связано с содержанием в топливе фракции 10 + 5 мм следующей зависимостью:
Y 1,78 + 0,017 x,
где Y содержание углерода в агломерате,
x содержание фракции 10 + 5 мм в топливе,
Опыты со спеканием шихты, содержащей топливо различной крупности, позволили определить оптимальное соотношение степени измельчения топлива в зависимости от крупности используемой руды для получения наибольшего количества остаточного углерода в агломерате:
dт 0,3dp,
где dт верхний предел крупности топлива, мм;
dp верхний предел крупности руды, мм;
причем содержание фракции, соответствующей верхнему пределу крупности топлива, составляет не боле 10 мас. топлива.

При дальнейшем увеличении крупности топлива нарушается распределение топлива в слое при загрузке шихты на паллеты, кусочки коксовой мелочи выкатываются из шихты на колосники паллет.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известного тем, что крупность топлива, используемого для агломерации, должна определяться в зависимости от крупности руды по соотношению:
dт 0,3dp,
где dт верхний предел крупности топлива, мм;
dp верхний предел крупности руды, мм;
причем содержание фракции, соответствующей верхнему пределу крупности топлива, составляет не более 10% массы топлива. Таким образом, заявляемый способ соответствует критерию изобретения "новизна". Технических решений, устанавливающих функциональную зависимость крупности топлива от крупности используемой руды, которая позволит получить агломерат с максимальным количеством остаточного углерода без увеличения топлива, сверх необходимого для спекания, не известно, т.е. можно сделать вывод о соответствии предлагаемого решения критерию "изобретательский уровень02, т.к. отличительные признаки не следуют явным образом из уровня техники.

Изобретение позволяет увеличить содержание остаточного углерода в агломерате до 2,3-3,0% практически без увеличения расхода топлива на агломерацию сверх необходимого для спекания. Кроме того, увеличение верхнего предела крупности топлива в силу улучшения газопроницаемости шихты, уменьшения удельной поверхности топлива создает лучшие условия для более полного использования теплотворной способности топлива за счет увеличения соотношения двуокиси углерода и окиси углерода в отходящих газах. Имеется также побочный эффект за счет уменьшения выбросов окиси углерода с отходящими газами агломерации в атмосферу.

Опытно-промышленные испытания предлагаемого способа проведены на комбинате "Южуралникель". При подготовке топлива к спеканию фракция 10 мм выделялась на грохоте с решеткой 10 мм. Надрешетный продукт измельчался в четырехвалковых дробилках или в стержневых мельницах до крупности 10 мм, причем содержание фракции + 10 мм не превышало 10%
Измельченный и подрешетный продукты смешивались, поступая на общий транспортер, а затем дозировались через тарельчатые питатели объемным методом. Смешивание компонентов шихты производилось в барабанных смесителях, а спекание -на ленточных спекательных машинах.

В результате были получены следующие данные, представленные в таблице.

С увеличением крупности топлива от 5 мм (прототип) до 10 мм повышается содержание остаточного углерода в топливе от 1,85 до 3,20%
Снижение содержания окиси углерода в отходящих газах при увеличении крупности топлива в шихте и повышение за счет этого содержания углерода в агломерате не нарушают баланса тепла, необходимого непосредственно для спекания.

Способ позволяет снизить расход кокса на шахтную плавку, не повышая расхода топлива на агломерацию и не усложняя процесс его подготовки к агломерации.

Похожие патенты RU2086674C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ОФЛЮСОВАННОГО ЖЕЛЕЗОРУДНОГО АГЛОМЕРАТА 1999
  • Панишев Н.В.
  • Тахаутдинов Р.С.
  • Краснов С.Г.
  • Антонюк В.В.
  • Гибадуллин М.Ф.
  • Некеров В.Д.
  • Нечепуренко О.Н.
  • Верблюденко А.П.
  • Терентьев В.Л.
RU2149907C1
СПОСОБ ПРОИЗВОДСТВА ОФЛЮСОВАННОГО АГЛОМЕРАТА 1997
  • Зевин С.Л.
  • Греков В.В.
  • Коршиков Г.В.
  • Кузнецов А.С.
  • Кукарцев В.М.
  • Панченко В.Ф.
  • Чернобривец Б.Ф.
RU2110589C1
СПОСОБ ПОДГОТОВКИ К СПЕКАНИЮ АГЛОМЕРАЦИОННОЙ ШИХТЫ 2005
  • Шацилло Владислав Вадимович
  • Лунегов Андрей Викторович
  • Меламуд Самуил Григорьевич
  • Дудчук Игорь Анатольевич
  • Крупин Михаил Андреевич
  • Волков Дмитрий Николаевич
RU2313588C2
ШИХТА ДЛЯ ПРОИЗВОДСТВА АГЛОМЕРАТА 2003
  • Терентьев В.Л.
  • Савинов В.Ю.
  • Лекин В.П.
  • Панишев Н.В.
  • Сибагатуллин С.К.
  • Терентьев А.В.
  • Петухов В.Н.
RU2255125C1
СПОСОБ ПЕРЕРАБОТКИ ОКИСЛЕННЫХ НИКЕЛЬСОДЕРЖАЩИХ МАТЕРИАЛОВ 1995
  • Рогов П.В.
  • Стукалов А.И.
  • Картамышев Н.Е.
  • Чернов А.И.
  • Люмкис С.Е.
  • Пронин А.Ф.
  • Иванов Т.Т.
  • Барсуков В.В.
  • Чешук А.Н.
  • Рахманов Ю.О.
  • Отрешко В.Д.
  • Муфтахов А.С.
  • Пашковский А.А.
  • Бухмиллер М.М.
RU2092587C1
Способ подготовки агломерационной шихты к спеканию 1976
  • Крыленко Владимир Иванович
  • Белоконь Степан Макарович
  • Зенькович Александр Лукич
  • Зубко Варвара Фадеевна
  • Кормышев Василий Васильевич
SU789611A1
СПОСОБ СПЕКАНИЯ АГЛОМЕРАЦИОННОЙ ШИХТЫ 1997
  • Скороходов В.Н.
  • Лисин В.С.
  • Настич В.П.
  • Кукарцев В.М.
  • Зевин С.Л.
  • Яриков И.С.
  • Науменко В.В.
  • Лебедев В.И.
  • Григорьев В.Н.
RU2114188C1
СПОСОБ СПЕКАНИЯ АГЛОМЕРАЦИОННОЙ ШИХТЫ 1997
  • Скороходов В.Н.
  • Лисин В.С.
  • Настич В.П.
  • Кукарцев В.М.
  • Зевин С.Л.
  • Григорьев В.Н.
  • Захаров Д.В.
RU2114193C1
СПОСОБ СПЕКАНИЯ АГЛОМЕРАЦИОННОЙ ШИХТЫ 1997
  • Скороходов В.Н.
  • Лисин В.С.
  • Настич В.П.
  • Кукарцев В.М.
  • Зевин С.Л.
  • Захаров Д.В.
  • Науменко В.В.
  • Лебедев В.И.
RU2114190C1
СПОСОБ ПОДГОТОВКИ АГЛОМЕРАЦИОННОЙ ШИХТЫ К СПЕКАНИЮ 1995
  • Белянский А.Д.
  • Зевин С.Л.
  • Коршиков Г.В.
  • Хайков М.А.
RU2095435C1

Иллюстрации к изобретению RU 2 086 674 C1

Реферат патента 1997 года СПОСОБ ПРОИЗВОДСТВА АГЛОМЕРАТА С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ ОСТАТОЧНОГО УГЛЕРОДА

Сущность: способ производства агломерата включает подготовку руды и твердого топлива, последующее смешивание и спекание, при этом верхний предел крупности используемого топлива определяют исходя из фракционного состава рудной части шихты по следующему соотношению: dт = 0,3dp, где dт - верхний предел крупности топлива, мм, а dp - верхний предел крупности руды, мм, причем содержание фракции, соответствующей верхнему пределу крупности топлива, составляет не более 10% массы топлива. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 086 674 C1

1. Способ производства агломерата с повышенным содержанием остаточного углерода, включающий подготовку твердого топлива и руды, смешивание и спекание, отличающийся тем, что верхний предел крупности топлива определяют из следующего соотношения:
dт 0,3dр,
где dт верхний предел крупности топлива, мм;
dр верхний предел крупности руды в шихте, мм.
2. Способ по п.1, отличающийся тем, что содержание фракции, соответствующей верхнему пределу крупности в топливе, составляет не более 10%

Документы, цитированные в отчете о поиске Патент 1997 года RU2086674C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ производства агломерата 1990
  • Елисеев Александр Кузьмич
  • Деревянко Василий Иванович
  • Куц Василий Сидорович
  • Мартыненко Владимир Антонович
  • Васюченко Анатолий Ильич
  • Галушкин Владимир Петрович
  • Рудовский Борис Григорьевич
  • Дроздов Георгий Михайлович
  • Крипак Станислав Николаевич
  • Гринвальд Александр Александрович
SU1770410A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ получения марганцевого агломерата с остаточным углеродом 1986
  • Петров Анатолий Васильевич
  • Цюрюпа Анатолий Дмитриевич
  • Кривенко Владимир Васильевич
  • Чайченко Александр Александрович
  • Воскеричян Арутюн Хосрофович
  • Дрожилов Лев Александрович
  • Коваль Александр Владимирович
  • Мангатов Владимир Михайлович
  • Величко Борис Федорович
SU1388444A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Приспособление для автоматической односторонней разгрузки железнодорожных платформ 1921
  • Новкунский И.И.
SU48A1

RU 2 086 674 C1

Авторы

Картамышев Н.Е.

Люмкис С.Е.

Пашковский А.А.

Рогов П.В.

Чернов А.И.

Барсуков В.В.

Иванов Т.Т.

Муфтахов А.С.

Рахманов Ю.О.

Пронин А.Ф.

Даты

1997-08-10Публикация

1993-11-29Подача